我还记得自己在机器学习领域完成的第一个项目——一个经典的房价预测模型,当时我非常兴奋。我甚至用 Streamlit 做了一个简单的界面,但随后我开始思考:如何把这个项目分享给其他人呢?事实上,构建一个机器学习模型只是“战斗的一半”,另一半则在于如何让别人能够方便地使用你打造的成果。将模型部署到云端正好解决了这个问题——你无需在本地运行模型。
在过去几年里,我尝试过多个免费的平台,用于部署从分类模型到完整微服务的各种项目。有些平台非常流行,也有一些不太为人熟知但同样很棒(所有这些平台都有允许公开访问的免费套餐)。在这篇文章中,我将结合自身体验与调研结果,推荐7个最优秀的免费机器学习模型托管平台。
1. Hugging Face Spaces 和 Hub
链接:https://huggingface.co/docs/hub/en/spaces
Hugging Face 是一个备受欢迎的机器学习社区平台。其 Hub 可用于托管模型代码,而 Spaces 则允许你通过 Gradio、Streamlit 或自定义 Docker 部署模型演示或应用。值得一提的是,Hugging Face 的免费套餐允许你托管不限数量的公开模型和数据集。在 Spaces 中,你可以免费使用“CPU Basic”(2 vCPU,16GB 内存)硬件资源来运行你的应用,完全零成本。成千上万的社区 Spaces 已经展示了丰富的模型。Spaces 原生支持主流界面(如 Gradio、Streamlit)。Hugging Face 还提供无服务器推理 API,可托管众多开放模型,初始阶段有免费额度(你可以免费试用任何公开模型)。如果需要托管私有模型或应用,则需开通付费的企业套餐。总体来看,Hugging Face 上手简单,并通过 git 集成了模型代码的版本控制。
2. Streamlit Community Cloud
链接:https://streamlit.io/cloud
Streamlit 是一个用于将 Python 代码快速构建为交互式网页应用的框架。其 Community Cloud(前称 Streamlit Sharing)允许你直接从 GitHub 仓库部署 Streamlit(或纯 Python)应用。只需连接 GitHub 账号、选择仓库和分支,Streamlit 会自动构建并托管你的应用。免费套餐允许你部署不限数量的公开应用(没有数量硬性上限),每个应用都会分配一个公开 URL。非常适合机器学习模型演示,你可以用简单的表单或仪表板运行模型。不过,较大的模型可能无法装入内存,且空闲约一小时后应用会自动休眠。部署流程极简,只需 git 推送代码即可,Streamlit 负责服务器部分。如果需要私有应用托管,可升级至付费的 Streamlit for Teams/Snowflake。
3. Render(免费 Web 服务)
链接:https://render.com/docs/free
Render 是一家类似 Heroku 的云托管服务商,提供免费套餐。你可以在 Render 部署 Web 服务(如 Flask 或 FastAPI 模型服务器)或静态网站。免费套餐每月提供750个 CPU 小时(足以让一个服务持续运行),并分配一个公开 URL。部署机器学习模型时,通常需将应用容器化(通过 Docker 或 Buildpacks)。Render 会从 GitHub 仓库自动构建并托管应用。它还支持“后台任务”和定时任务(cron jobs),适合定期执行的任务。这一方案稍显进阶,但只要模型能装进 1GB 内存(免费实例限制),就可以托管。如果15分钟内无活动,服务可能会休眠(与其它免费平台类似)。GPU 仅限付费套餐。你可以选择应用是公开还是私有(注意:私有 Web 服务需付费)。静态网站在免费套餐下始终是公开的。
4. PythonAnywhere
链接:https://www.pythonanywhere.com/
PythonAnywhere 允许你部署可通过互联网访问的 Web 应用(如 Flask/Django),应用域名为 username.pythonanywhere.com。你可以上传代码或连接 Git 仓库。它对小型项目非常友好且易上手。免费账户提供少量 CPU 和存储空间。对于机器学习模型,你可以安装所需依赖库,并部署服务端点。不过,免费账户资源有限(仅1个 Web worker,无常驻任务,512MB 内存),仅适合简单模型。没有免费GPU,也无法安装自定义系统库(只能用 PythonAnywhere 预装的)。免费应用为公开(任何拥有链接的人都能访问)。如需更多应用、资源或私有配置,则需付费升级。
5. Binder
链接:https://mybinder.org/
Binder 是一个开源免费服务,能从 GitHub 仓库启动在线 Jupyter notebook。只需将包含 notebook 和环境依赖(如 requirements.txt)的仓库地址输入 MyBinder,即可在云端临时启动 notebook 服务器。非常适合可复现的演示:访问者可获得交互式会话并运行你的 notebook,但每个会话都是隔离且临时的(最多约1-2小时)。Binder 使用简单,无需注册,完全免费,适合分享演示或教程。它支持 Python、R、Julia 等环境。不过,Binder 会话时长极短,常常因资源共享而运行缓慢,并且只能与公开的 GitHub 仓库配合(适用于开放分享),不支持私有模型托管。
6. Replicate
链接:https://replicate.com/
Replicate 是一个通过 API 运行机器学习模型的平台。它托管了许多开源模型(如 Stable Diffusion、LLM 等),你可以通过网络调用它们。同时也支持上传自定义模型并进行托管。Replicate 提供便捷的“run” API:只需一行代码即可调用任意支持的模型。针对免费用户,Replicate 支持在公开模型上“免费试用”,意味着可以试用推荐模型,但大量使用需付费。流程非常简单:选择模型,发送输入 JSON,获取结果。Replicate 是无需服务器管理即可快速获得 ML 模型 REST API 的方式。然而,它没有内置前端,仅提供 API 服务。
7. Railway
链接:https://railway.com/
Railway 是另一个简单易用的云应用平台,免费套餐初始即赠送 5 美元额度。你可以通过 Git 集成或 CLI 部署 Python 或 Node 应用(如 FastAPI 模型端点)。Railway 也支持快速配置数据库等附加服务。免费套餐易于上手:推送代码即可获得访问 URL。虽然没有专门的 ML 工具,但很多用户会部署 ML 模型服务端点。你可自定义访问控制(默认公开 URL),也可自行集成认证或通过付费升级实现更细致的网络管控。
额外推荐:主流云服务商(GCP/AWS/Azure)
各大主流云平台(Google Cloud、AWS、Azure)均提供免费套餐,可以托管机器学习模型,虽然用途更为广泛。例如,Google Cloud 的 Cloud Run 支持将任意容器部署为微服务,其“永久免费”套餐每月约提供200万次请求和36万 vCPU 秒,足以免费运行小型应用。类似地,AWS 的 Lambda 函数每月最多可免费调用100万次,适合托管轻量级模型 API(受内存限制)。Azure 的 Functions 也有免费配额。这些平台面向开发者,需要一定的云环境配置和账户注册。
结论
上述每个平台都为你提供了不同程度的免费模型分享与托管方式,非常适合用于快速演示或作品集项目。对于快速演示或展示,使用 notebook 环境(如 Colab、Kaggle、Binder)最为简单易用:免费、熟悉、且便于与他人分享代码。Streamlit Community Cloud 与 Hugging Face Spaces 则是机器学习模型托管的绝佳选择(只需 Python 及其框架,无需后端代码)。如果你需要更多灵活性、且熟悉 Python Web 框架(如 Flask 或 FastAPI),Render、Railway 和 PythonAnywhere 能让你托管自定义端点或仪表盘,只需简单写点代码或搭建小服务器,托管工作则交由平台完成。Replicate 则适合希望通过 API 方式调用模型、无需管理服务器的用户。如果你打算探索更具可扩展性、面向生产的方案,主流云服务商的免费套餐(GCP/AWS/Azure)则提供了最大灵活性,但需要一定开发经验。
最终,最佳平台取决于你的需求:是要做简单演示、API端点,还是更定制化的部署。好消息是,许多服务都可以免费起步,等到需要扩展时再考虑升级。