题目:
给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
示例 1:
输入: nums: [1, 1, 1, 1, 1], S: 3
输出: 5
解释:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
一共有5种方法让最终目标和为3。
注意:
数组非空,且长度不会超过20。
初始的数组的和不会超过1000。
保证返回的最终结果能被32位整数存下。
思路:
1.递归
2.动态规划
代码:
/*
class Solution {
private:
void DFS(vector<int>& nums, int s, int cur,int& ans,int index)
{
if (index == nums.size())
{
if (cur == s)
ans += 1;
return;
}
DFS(nums, s, cur + nums[index], ans, index + 1);
DFS(nums, s, cur -nums[index], ans, index + 1);
return ;
}
public:
int findTargetSumWays(vector<int>& nums, int S) {
int len = nums.size();
if (len == 0) return 0;
int ans = 0;
DFS(nums, S, 0, ans, 0);
return ans;
}
};
*/
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int S) {
int len = nums.size();
if (len == 0) return 0;
int sum = 0;
for (int i = 0; i < len; i++)
sum += nums[i];
if (sum < S || (S + sum) % 2 == 1) return 0;
S = (sum + S) / 2;
vector<vector<int>>dp(len + 1, vector<int>(S + 1,0));
for (int i = 0; i <= len; i++)
dp[i][0] = 1;
for (int i = 1; i <= len; i++)
{
for (int j = 1; j <= S; j++)
{
if (j - nums[i - 1] >= 0)
dp[i][j] = dp[i - 1][j] +dp[i-1][j - nums[i - 1]];
else
dp[i][j] = dp[i - 1][j];
}
}
return dp[len][S];
}
};