向量子空间的基
定义 1 向量的所有线性组合的集合称为由
张成(或生成)的子空间或闭包(closure),记作
向量称为子空间W的张成集(spanning set)或生成元(generator)。
定义 2 生成子空间W的线性无关的向量{}称为子空间W的基向量(basis vectors)或简称为基。生成子空间W的基向量的个数称为子空间W的维数,即有
注意:{}只是子空间W的一组基,并非唯一的基。这是因为,对于n阶向量空间的一个d维子空间W而言,向量空间V中任何d个线性无关向量的集合都张成子空间W。虽然一个子空间可能存在许多基的选择,但是所有基都具有相同的向量个数。
定义 3 若{}和 {
}是两组不同的基,并且
,则称其中-组基是另外一组基的对偶基(dual basis)。
定义 4 令{}是子空间Span{
}的基向量。若这些基向量满足正交条件
则称这些基向量为正交基向量。
定义 5 若正交基向{}中所有向量的范数均等于1,即
向量空间的子空间具有以下性质。
1.设和
。是向量空间V中的两个子空间,则它们的交集
∩
也是V的子空间。
2.设和
.是向量空间V中的子空间,则和
+
也是V的子空间。