矩阵分析与应用-11-向量子空间的基

向量子空间的基

定义 1 向量x_1,x_2,...,x_d的所有线性组合的集合称为由x_1,x_2,...,x_d张成(或生成)的子空间或闭包(closure),记作

 W=Span\left \{ x_1,x_2,...,x_d\right\}=Close\left \{ x_1,x_2,...,x_d \right\}

向量x_1,x_2,...,x_d称为子空间W的张成集(spanning set)或生成元(generator)。

 定义 2 生成子空间W的线性无关的向量{u_1,u_2,..,u_d}称为子空间W的基向量(basis vectors)或简称为基。生成子空间W的基向量的个数称为子空间W的维数,即有

d=dim\left\{Span\left \{ u_1,u_2,...,u_d\right\}\right\}

注意:{u_1,u_2,..,u_d}只是子空间W的一组基,并非唯一的基。这是因为,对于n阶向量空间的一个d维子空间W而言,向量空间V中任何d个线性无关向量的集合都张成子空间W。虽然一个子空间可能存在许多基的选择,但是所有基都具有相同的向量个数。

 定义 3 若{\alpha_1,\alpha_2,...,\alpha_n}和 {\beta_1,\beta_2,...,\beta_n}是两组不同的基,并且\alpha_i^H\beta_i = 0,则称其中-组基是另外一组基的对偶基(dual basis)。

定义 4 令{x_1,x_2,...,x_n}是子空间Span{x_1,x_2,...,x_n}的基向量。若这些基向量满足正交条件

 <x_i,x_j>=x_i^Tx_j=0,\forall i\neq j

则称这些基向量为正交基向量。

定义 5 若正交基向{x_1,x_2,...,x_n}中所有向量的范数均等于1,即

||x_i||=1,i=1,2,...,n

向量空间的子空间具有以下性质。

1.设W_1W_2。是向量空间V中的两个子空间,则它们的交集W_1W_2也是V的子空间。

2.设W_1W_2.是向量空间V中的子空间,则和W_1+W_2也是V的子空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值