缓存击穿、穿透、雪崩
缓存穿透
可以简单理解成查询一个不存在的数据
解决方案:
布隆过滤器
:对所有可能查询的参数以 hash 形式存储,在控制层先进行校验,不符合则丢弃,从而避免了对底层存储系统的查询压力。
缓存空对象
:当数据库不命中的时候直接返回一个空对象并缓存起来,同时设置一个过期时间。
问题:
- 如果空值能够被缓存起来,这就意味着缓存需要更多的空间存储更多的键,因为这当中可能会有很多的空值的键。
- 即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一段时间窗口的不一致,这对于需要保持一致性的业务会有影响。
缓存击穿
高并发访问一个 key,当这个 key 过期的一瞬间,直接击穿访问到数据库,并且要回写给缓存,导致数据库瞬间压力过大“击穿”。
解决方案:
设置热点key 永不过期
加互斥锁
:保证每个 key同时只能有一个线程去后端查询,其他线程等待。对分布式锁要求高。
缓存雪崩
某一个时间段缓存集体到期(双十一凌晨,商品价格到一点全部刷新)那么所有的访问就直接到了数据库,对与数据库而言就会产生周期性的压力波峰。数据库对这种压力的承受能力不可预知,如果某个 Redis 服务器直接宕机了,很有可能会把数据库压垮。
解决方案:
搭建集群
:利用 Redis 的高可用,集群搭建起来。
限流降级
:在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个 key 只允许一个线程查询数据和写缓存,其他线程等待。
数据预热
:在正式部署之前,线板数据预先访问一遍,将大量访问的数据预先加载到缓存里面,在即将发生大并发访问前手动触发加载缓存不同的 key,设置不同的过期时间,让缓存失效的时间点尽量均匀。