《机器学习》西瓜书学习笔记(Chapter03)

线性模型

1.基本形式

f ( x ) = w 1 x 1 + w 2 x 2 + . . . + w d x d f(x)=w_1x_1+w_2x_2+...+w_dx_d f(x)=w1x1+w2x2+...+wdxd
f ( x ) = w T x + b f(x)=w^Tx+b f(x)=wTx+b
w : w: w:weight
b : b: b:bias
线性模型具有可解释性: w i w_i wi的值越大, i i i属性越重要。

2.线性回归

f ( x i ) = w x i + b = > f ( x i ) ≃ y i f(x_i)=wx_i+b=>f(x_i)\simeq{y_i} f(xi)=wxi+b=>f(xi)yi

对属性的处理有两种形式:
(1)对离散属性,如果存在“序”的关系,则通过连续化将其转化为连续值。
(2)不存在“序的关系”,则转化为向量形式。

用均方误差衡量回归性能:
( w ∗ , b ∗ ) = a r g m i i n ( w , b ) ∑ i = 1 m ( f ( x i ) − y i ) 2 (w^*,b^*)=argmiin_{(w,b)}\sum^m_{i=1}(f(x_i)-y_i)^2 (w,b)=argmiin(w,b)i=1m(f(xi)yi)2
m : m: m:m个样本
在这里插入图片描述

多元线性回归

f ( x i ) = w T x i + b f(x_i)=w^Tx_i+b f(xi)=wTxi+b
f ( x i ) ≃ y i f(x_i)\simeq{y_i} f(xi)yi
m个样本,每个样本d个属性。
X : m × ( d + 1 ) X:m\times{(d+1)} X:m×(d+1)
在这里插入图片描述
w ^ = ( w ; b ) : ( d + 1 ) × m \widehat{w}=(w;b): (d+1)\times{m} w =(w;b):(d+1)×m
y = ( y 1 ; y 2 ; . . . ; y m ) : m × 1 y=(y_1;y_2;...;y_m):m\times{1} y=(y1;y2;...;ym):m×1
w ^ ∗ = a r g m i n w ^ ( y − X w ^ ) T ( y − X w ^ ) \widehat{w}^*=argmin_{\widehat{w}}(y-X\widehat{w})^T(y-X\widehat{w}) w =argminw (yXw )T(yXw )
X T X 正 定 时 : X^TX正定时: XTX
w ^ ∗ = ( X T X ) − 1 X T y \widehat{w}^*=(X^TX)^{-1}X^Ty w =(XTX)1XTy

3.线性回归demo

https://blog.csdn.net/Xiao_yanling/article/details/89602535

4.广义线性模型

g : g: g:单调可微函数
y = g − 1 ( w T x + b ) y=g^{-1}(w^Tx+b) y=g1(wTx+b)

5.对数几率回归

在二分类任务中,替代单位阶跃函数的单调可微函数。
在这里插入图片描述
S i g m o i d Sigmoid Sigmoid函数:
g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1
自变量取值为任一实数,值域为【0,1】
解释:将任意的输入映射到了【0,1】区间,在线性回归中可以得到一个预测值,再将该值映射到 S i g m o i d Sigmoid Sigmoid函数,这样就完成了由值到概率的转换,也就是分类任务。

多分类任务

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值