CS224d lecture04

训练数据集: { x i , y i } i = 1 N \{x_i,y_i\}^N_{i=1} {xi,yi}i=1N

机器学习中的分类

假定输入x是固定的,训练参数W,预测 P ( y ∣ x ) = W y , x ) ∑ c = 1 C e x p ( W c , x ) P(y|x)=\frac{W_y,x)}{\sum^C_{c=1}exp(W_c,x)} P(yx)=c=1Cexp(Wc,x)Wy,x)

具体过程:
在这里插入图片描述
C:总类别数。
W:模型参数矩阵。
对c=1…C都要计算 f c f_c fc
W y ⋅ x = ∑ i = 1 d W y i x i = f y W_y\cdot{x}=\sum^d_{i=1}W_{y_i}x_i=f_y Wyx=i=1dWyixi=fy
归一化:
P ( y ∣ x ) = e x p ( f y ) ∑ c = 1 C e x p ( f c ) = s o f t m a x ( f ) y P(y|x)=\frac{exp(f_y)}{\sum^C_{c=1}exp(f_c)}=softmax(f)_y P(yx)=c=1Cexp(fc)exp(fy)=softmax(f)y

总体损失函数: J ( θ ) = 1 N ∑ i = 1 N − l o g ( e f y i ∑ c = 1 C e f c ) + λ ∑ k θ k 2 J(\theta)=\frac{1}{N}\sum^N_{i=1}-log(\frac{e^{f_{y_i}}}{\sum^C_{c=1}e^{f_c}})+\lambda{\sum_k\theta_k^2} J(θ)=N1i=1Nlog(c=1Cefcefyi)+λkθk2
其中 λ ∑ k θ k 2 \lambda{\sum_k\theta_k^2} λkθk2是正则项:使模型权值尽可能小。
f = W x f=Wx f=Wx f f f是模型。

词窗口分类(Window Classification)

训练一个softmax分类器,给中心词分配一个标签,然后用一个窗口把它前后的单词连接起来。

例:窗口长度为2=>中心词左右各两个单词,加中心词,窗口内共五个单词。
. . . m u s e u m s   i n   P a r i s   a r e   a m a z i n g . . . ...museums\ in\ Paris\ are\ amazing... ...museums in Paris are amazing...
x w i n d o w = [ X m u s e u m s   X i n   X P a r i s   X a r e   X a m a z i n g ] T ∈ R 5 d x_{window}=[X_museums\ X_{in}\ X_{Paris}\ X_{are}\ X_{amazing}]^T\in{R^{5d}} xwindow=[Xmuseums Xin XParis Xare Xamazing]TR5d
x = x w i n d o w x=x_{window} x=xwindow:
y y ^ = P ( y ∣ x ) = e x p ( W y ⋅ x ) ∑ c = 1 C e x p ( W c ⋅ x ) \widehat{y_y}=P(y|x)=\frac{exp(W_y\cdot{x})}{\sum^C_{c=1}exp(W_c\cdot{x})} yy =P(yx)=c=1Cexp(Wcx)exp(Wyx)
其中 y y ^ \widehat{y_y} yy 指模型预测的正确类别。

更新词向量

标记:
t t t:目标概率分布。独热向量:只有在正确类别y的值为1,其余为零。
f = f ( x ) = W x ∈ R C f=f(x)=Wx\in{R^C} f=f(x)=WxRC:C维向量,C是类别的数量。
链式法则:
∂ ∂ x − l o g ( s o f t m a x ( f y ( x ) ) \frac{\partial}{\partial{x}}-log(softmax(f_y(x)) xlog(softmax(fy(x))
= ∑ c = 1 C − ∂ l o g ( s o f t m a x ( f y ( x ) ∂ f c ⋅ ∂ f c ( x ) ∂ x =\sum^C_{c=1}-\frac{\partial{log(softmax(f_y(x)}}{\partial{f_c}}\cdot{\frac{\partial{f_c(x)}}{\partial{x}}} =c=1Cfclog(softmax(fy(x)xfc(x)
考虑两种情况:
(1) c = y c=y c=y
(2) c ≠ y c\neq{y} c̸=y
∂ ∂ x − l o g ( s o f t m a x ( f y ( x ) ) = [ y 1 ^ , y 2 ^ , . . . , y y ^ − 1 , . . . y C ^ ] T \frac{\partial}{\partial{x}}-log(softmax(f_y(x))=[\widehat{y_1},\widehat{y_2},...,\widehat{y_y}-1,...\widehat{y_C}]^T xlog(softmax(fy(x))=[y1 ,y2 ,...,yy 1,...yC ]T
在正确类别减一,其他什么也不做。
公式向量化:
∂ ∂ x − l o g ( s o f t m a x ( f y ( x ) ) = [ y ^ − t ] = δ \frac{\partial}{\partial{x}}-log(softmax(f_y(x))=[\widehat{y}-t]=\delta xlog(softmax(fy(x))=[y t]=δ
δ \delta δ:误差信号
= ∑ c = 1 C − ∂ l o g ( s o f t m a x ( f y ( x ) ∂ f c ⋅ ∂ f c ( x ) ∂ x = ∑ c = 1 C δ c W c T =\sum^C_{c=1}-\frac{\partial{log(softmax(f_y(x)}}{\partial{f_c}}\cdot{\frac{\partial{f_c(x)}}{\partial{x}}}=\sum^C_{c=1}\delta_cW_c^T =c=1Cfclog(softmax(fy(x)xfc(x)=c=1CδcWcT
∂ ∂ x − l o g P ( y ∣ x ) = ∑ c = 1 C δ c W c T = W T δ ∈ R 5 d \frac{\partial}{\partial{x}}-logP(y|x)=\sum^C_{c=1}\delta_cW_c^T=W^T\delta\in{R^{5d}} xlogP(yx)=c=1CδcWcT=WTδR5d
这里的x指窗口,则:
∇ x J = W T δ = δ x w i n d o w = [ ∇ x m u s e u m s , ∇ x i n , ∇ x P a r i s , ∇ x a r e , ∇ x a m a z i n g ] T ∈ R 5 d \nabla_xJ=W^T\delta=\delta_{x_{window}}=[\nabla_{x_{museums}},\nabla_{x_{in}},\nabla_{x_{Paris}},\nabla_{x_{are}},\nabla_{x_{amazing}}]^T\in{R^{5d}} xJ=WTδ=δxwindow=[xmuseums,xin,xParis,xare,xamazing]TR5d
这个窗口中有 i n in in,则这个梯度会出现在所有包含 i n in in的窗口中。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值