柯西乘积定理(Cauchy Product Theorem)

柯西乘积

结论

在数学上,以法国数学家奥古斯丁·路易·柯西命名的柯西乘积,是指两组数列an,bn的离散卷积。

对两个严格的形式级数(不需要收敛)an,bn:

           

一般地,对于实数和复数,柯西乘积定义为如下的离散卷积形式:

            

啥叫形式?

  • “形式”是指我们对级数运算时不考虑是否收敛,参见形式幂级数。
  • 人们希望,通过对两组级数做实际卷积的有限和的类推,得到无穷级数。
  • 就如同两个数列的和是有限范围一样做乘法。 在充分良态(well-behaved)的情况下,上述式子成立。而更重要的一点,尽管这两个无穷级数可能不收敛,它们的柯西乘积仍可能存在。(百度百科)

叽里咕噜说啥呢?

  • “形式”,就是对级数做运算的时候,不管能不能得到一个确切的结果(也就是不考虑他是发射还是收敛),先算了再说。就跟形式幂级数一样,就只看式子的样子,也就是形式。
  • 咋做运算呢?——就像我们平常算有限个数加起来再相乘那样,对两组无穷多个数加起来的级数(无穷级数 )也做类似的操作。把两组级数按照一种特定方式(类似卷积,就是按一定规则把对应项乘起来再相加 )相乘,得到一个新的无穷级数 。
  • 如果各项数值变化比较规律,满足一些条件,这样相乘得到的式子是成立的。而且有意思的是,就算最开始那两个无穷级数加起来没有个确定的数(不收敛 ),按照这种方式乘出来的新级数(柯西乘积 )却有可能是有意义的,能算出个结果来 。

此外,对以下两个级数相乘:

                                         

还可以表示为:

                                

其中:

柯西划线法

        怎么记住这个公式?

        先将两个级数的项写出来,横着一排,竖着一排:

                ​​​​​​​       

        写上对应两个项数的乘积:

                           ​​​​​​​

        划线:

                    

        那么,当a级数有三项,b级数有三项的时候就可以下成下面这样:

                                        

        可以发现,对上面的第i行(i从0到4),都有:每一项的下标和都是i

        故:

        

     

推广

        两个从  n=0  开始的无穷幂级数,相乘,得到的结果是一个新的无穷幂级数,其中新幂级数的第  n  项系数 c_{n}是通过将  a  系列的前  n+1  项(即a_{0}a_{n})与  b  系列对应的项( 即b_{n}b_{0})两两相乘再求和得到的,也就是 

                        

参考资料

柯西乘积_百度百科

张宇十八讲

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值