单调递增的数字

题目描述

当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。

给定一个整数 n ,返回 小于或等于 n 的最大数字,且数字呈 单调递增 。

输入样例#1

332

输出样例#1

299

输入样例#2

1234

输出样例#2

1234

思路:找到不符合单调递增的地方改掉,再把后面都变成‘9’好了,用字符串来做。

#include<bits/stdc++.h>
using namespace std;
string DX(string a){
	string b="";
	for(int i=a.size()-1;i>=0;i--) b+=a[i];
	return b;
}
string inttostring(int a){
	string s="";
	while(a%10!=a){
		s+=a%10+'0';
		a/=10;
	}
	s+=a%10+'0';
	return DX(s);
}
string sol(int n){
	string tmp=inttostring(n);
	int len=tmp.size();
	for(int i=len-1;i>0;i--){
		if(tmp[i]<tmp[i-1]){
			tmp[i-1]--;
			for(int j=i;j<len;j++) tmp[j]='9';
		}
	}
	return tmp;
}
int n;
int main(){
	cin>>n;
	string s=sol(n);
	for(int i=0;s[i]=='0';i++) s.erase(0,1);
	cout<<s;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
最长单调递增子序列问题的动态规划算法实现: 1. 定义状态:dp[i]表示以第i个元素为结尾的最长单调递增子序列的长度。 2. 初始化:dp[i]初始值为1,因为任意一个元素本身就是一个长度为1的单调递增子序列。 3. 状态转移方程:对于每个元素i,枚举其之前的元素j(j<i),如果nums[j] < nums[i],则dp[i] = max(dp[i], dp[j]+1)。 4. 最终结果:遍历dp数组,找到最大值。 代码实现: ``` def longestIncreasingSubsequence(nums): n = len(nums) dp = [1] * n for i in range(1, n): for j in range(i): if nums[j] < nums[i]: dp[i] = max(dp[i], dp[j]+1) return max(dp) ``` 数字三角形问题的动态规划算法实现: 1. 定义状态:dp[i][j]表示从顶部走到(i,j)位置的最小路径和。 2. 初始化:dp[0][0] = triangle[0][0],其他dp[i][j]的初始值为正无穷。 3. 状态转移方程:对于每个位置(i,j),有两个状态可以转移过来,即(i-1,j)和(i-1,j-1),因此dp[i][j] = min(dp[i-1][j], dp[i-1][j-1]) + triangle[i][j]。 4. 最终结果:遍历dp数组的最后一行,找到最小值。 代码实现: ``` def minimumTotal(triangle): n = len(triangle) dp = [[float('inf')] * n for _ in range(n)] dp[0][0] = triangle[0][0] for i in range(1, n): for j in range(i+1): dp[i][j] = min(dp[i-1][j], dp[i-1][j-1]) + triangle[i][j] return min(dp[-1]) ``` 效率分析: 最长单调递增子序列问题的时间复杂度为O(n^2),空间复杂度为O(n)。 数字三角形问题的时间复杂度为O(n^2),空间复杂度为O(n^2)。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值