题目描述
现有m个相同的苹果(0<m<11)放入n个相同的篮子(n>0),允许篮子为空,问共有多少种放法?
(注:1 3 1和1 1 3是一种放法)
例:
输入7 3
输出8
题目分析
可以将题目分为n>m和n<=m两大类:
- n>m
此时篮子数大于苹果数,而篮子是相同的,所以此时同m个篮子,即:
F ( m , n ) = F ( m , m ) F(m,n)=F(m,m) F(m,n)=F(m,m) - n<=m
此时篮子数小于等于苹果树,由于篮子可以为空,因此可以再细分为两种情况:
(1)至少有一个篮子为空,即:
F ( m , n ) = F ( m , n − 1 ) F(m,n)=F(m,n-1) F(m,n)=F(m,n−1)
(2)篮子里都有苹果,如果每个篮子都有苹果,则每个篮子各取出1个苹果,对结果没有影响,所以:
F ( m , n ) = F ( m − n , n ) F(m,n)=F(m-n,n) F(m,n)=F(m−n,n)
代码实现
递归
private static int digui(int m, int n) {
// 递归出口
// 如果没有苹果或者只有1个篮子,则只有1种放法
if (m == 0 || n == 1) {
return 1;
}
if (n > m) {
return digui(m, m);
} else {
return digui(m, n-1) + digui(m-n, n);
}
}
动态规划
private static int dp(int m, int n) {
// 定义一个数组存放中间计算值
int[][] resultTable = new int[m+1][n+1];
for (int j = 1; j <= n; j++) {
// 没有苹果
resultTable[0][j] = 1;
}
for (int i = 1; i <= m; i++) {
// 只有一个篮子
resultTable[i][1] = 1;
}
// i代表苹果,j代表篮子
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (j > i) {
resultTable[i][j] = resultTable[i][i];
} else {
resultTable[i][j] = resultTable[i][j-1] + resultTable[i-j][j];
}
}
}
return resultTable[m][n];
}