【JavaScript】JavaScript实现大数相乘

在 JavaScript 中处理大数相乘时,由于 Number 类型存在精度限制(最大安全整数为 2⁵³-1),需要特殊处理。


一、原生字符串模拟法(兼容性最佳)

通过字符串逐位计算模拟竖式乘法,支持任意位数整数相乘:

function multiplyBigNumbers(num1, num2) {
  if (num1 === '0' || num2 === '0') return '0';
  
  const len1 = num1.length, len2 = num2.length;
  const pos = new Array(len1 + len2).fill(0); // 存储中间结果的数组

  // 双重循环实现逐位相乘
  for (let i = len1 - 1; i >= 0; i--) {
    const n1 = +num1[i];
    for (let j = len2 - 1; j >= 0; j--) {
      const n2 = +num2[j];
      const sum = pos[i + j + 1] + n1 * n2;
      
      pos[i + j + 1] = sum % 10;  // 当前位存储个位
      pos[i + j] += Math.floor(sum / 10); // 进位累加到高位
    }
  }

  // 处理前导零
  return pos.join('').replace(/^0+/, '') || '0';
}

console.log(multiplyBigNumbers('123456789', '987654321')); 
// 输出:"121932631112635269"

关键点解释:

  1. 数组初始化:用 len1 + len2 长度的数组存储中间结果(两数相乘最大位数为两数位数之和)
  2. 进位处理:通过 Math.floor(sum / 10) 计算进位,累加到高位位置
  3. 前导零处理:使用正则表达式去除结果中无效的前导零

二、BigInt 原生支持(ES11+ 环境)

对于支持 ES11 的环境,可直接使用 BigInt 类型处理大整数运算:

const bigMultiply = (a, b) => {
  try {
    return (BigInt(a) * BigInt(b)).toString();
  } catch {
    throw new Error('输入必须为整数字符串');
  }
};

console.log(bigMultiply('9007199254740993', '2')); 
// 输出:"18014398509481986"

注意事项:
• 仅支持整数运算,无法处理小数

• 数字必须以字符串形式传入,避免直接使用超出安全范围的数值字面量

• 与普通 Number 类型运算需显式转换:BigInt(5) * 2n(后缀 n 表示 BigInt)


三、第三方库方案(高精度浮点/复杂运算)

对于需要处理浮点数或复杂数学运算的场景,推荐使用 bignumber.js:

import BigNumber from 'bignumber.js';

const preciseMultiply = (a, b) => {
  return new BigNumber(a)
    .multipliedBy(new BigNumber(b))
    .toString();
};

console.log(preciseMultiply('0.2', '0.1')); // "0.02"(避免浮点精度问题)
console.log(preciseMultiply('1e+500', '2e+300')); // "2e+800"

优势:
• 支持科学计数法、小数、指数运算

• 提供链式 API(.plus().minus() 等)

• 精确控制舍入规则和精度


四、性能优化对比

方法时间复杂度适用场景优化建议
字符串模拟法O(n²)兼容性要求高、无第三方依赖使用 Uint8Array 替代普通数组
BigIntO(1)现代浏览器、Node.js 环境避免频繁类型转换
bignumber.jsO(n log n)复杂数学运算、金融计算启用 EXPONENTIAL_AT 配置优化显示

五、方案选型指南

  1. 简单整数运算 → 优先使用 BigInt(性能最佳)
  2. 旧浏览器兼容 → 字符串模拟法(需自行处理边界条件)
  3. 科学计算/财务系统 → 第三方库(支持高精度浮点运算)

扩展阅读:对于超大规模运算(如万位级乘法),可结合 WebAssembly 实现性能突破,例如使用 GNU 多精度算术库(GMP)编译为 WASM 模块。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秀秀_heo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值