离线强化学习(offline reinforcement learning,简称ORL)是一种利用已有的数据集进行强化学习的方法,不需要与环境进行实时交互。ORL的优点是可以节省采样成本,提高数据利用率,降低安全风险,适用于许多实际场景,如医疗、金融、推荐系统等。然而,ORL也面临着一些挑战,如数据偏差、探索-利用权衡、评估指标等。本文将对ORL的基本概念、主要方法、应用领域和未来发展进行分析。
ORL的核心问题是如何从一个固定的数据集中学习一个有效的策略,使其在未知的环境中表现良好。这个数据集通常由一个或多个行为策略(behavior policy)生成,可能与目标策略(target policy)不同。因此,ORL需要解决数据偏差(data mismatch)的问题,即数据集中的状态-动作分布与目标策略下的分布不一致。为了解决这个问题,ORL需要借助于一些技术,如重要性采样(importance sampling)、对抗性训练(adversarial training)、模型学习(model learning)等。
根据是否使用模型,ORL可以分为基于模型的方法(model-based methods)和基于模型无关的方法(model-free methods)。基于模型的方法通过从数据集中学习一个环境模型,然后利用该模型进行规划或控制,从而得到目标策略。基于模型无关的方法则直接从数据集中学习一个值函数或策略函数,不需要显式地建立环境模型。基于模型无关的方法又可以分为基于值函数的方法(value-based methods)和基于策略函数的方法(policy-based methods)。基于值函数的方法通过从数据集中学习一个状态-动作值函数或状态值函数,然后根据该值函数选择最优动作。基于策略函数的方法则直接从数据集中学习一个参数化的策略函数,不需要显式地计算值函数。
CQL
然而,离线强化学习也面临着一些挑战,其中最主要的是分布偏移(distribution shift)问题。分布偏移是指离线数据集中的状态-动作分布与当前策略下的状态-动作分布不一致,导致策略优化过程中出现过拟合或错误泛化的现象。分布偏移会使得离线强化学习算法无法有效地利用数据集中的信

离线强化学习(ORL)通过已有的数据集进行学习,无需实时交互,适用于医疗、金融等领域。CQL通过限制策略探索范围解决分布偏移问题,而IQL利用SARSA目标和期望回归减少过估计风险,两者均在离线数据集上表现出色。ORL面临的挑战包括数据偏差和分布偏移,未来研究将继续解决这些问题。
最低0.47元/天 解锁文章
113

被折叠的 条评论
为什么被折叠?



