二分图之最大匹配

通过二分图和匈牙利算法求解棋盘上骨牌的最大放置数量,考虑了格子禁止条件和骨牌布局的限制。
摘要由CSDN通过智能技术生成

背景知识介绍

匈牙利算法

二分图的最大匹配

描述

给定一个二分图,其中左半部包含n1个点(编号 1∼n1),右半部包含n2个点(编号 1∼n2),二分图共包含m条边。

数据保证任意一条边的两个端点都不可能在同一部分中。

请你求出二分图的最大匹配数。

二分图的匹配:给定一个二分图G,在G的一个子图M中,M的边集{E}中的任意两条边都不依附于同一个顶点,则称M是一个匹配。

二分图的最大匹配:所有匹配中包含边数最多的一组匹配被称为二分图的最大匹配,其边数即为最大匹配数。

输入

第一行包含三个整数n1n2m

接下来m行,每行包含两个整数uv,表示左半部点集中的点u和右半部点集中的点v之间存在一条边。

数据范围

1≤n1,n2≤500

1≤u≤n1

1≤v≤n2

1≤m≤10^5

输出

输出一个整数,表示二分图的最大匹配数。

代码实现

#include<iostream>
#include<cstring>
using namespace std;
const int N=505,M=100005;
int n1,n2,m;
int h[N],e[M],ne[M],idx;
int match[N];//存储匹配节点
bool st[N];//顶点是否已在当前增广路径中

void add(int u,int v)
{
    e[idx]=v,ne[idx]=h[u],h[u]=idx++;
}
bool find(int x)//为x寻找匹配
{
    for(int i=h[x];~i;i=ne[i])
    {
        int j=e[i];
        if(!st[j])
        {
            st[j]=true;
            if(match[j]==0||find(match[j]))//如果j未匹配或j的匹配节点可以重新匹配
            {
                match[j]=x;
                return true;
            }
        }
    }
    return false;
}
int main()
{
    memset(h,-1,sizeof h);
    scanf("%d%d%d",&n1,&n2,&m);

    for(int i=0;i<m;i++)
    {
        int u,v;
        scanf("%d%d",&u,&v);
        add(u,v);
    }
    int res=0;
    for(int i=1;i<=n1;i++)
    {
        memset(st,false,sizeof st);
        if(find(i))res++;
    }
    printf("%d\n",res);
    return 0;
}

二分图试炼之棋盘覆盖

描述

给定一个 N 行 N 列的棋盘,已知某些格子禁止放置。

求最多能往棋盘上放多少块的长度为 2、宽度为 1 的骨牌,骨牌的边界与格线重合(骨牌占用两个格子),并且任意两张骨牌都不重叠。

输入
8 0

第一行包含两个整数 N 和 t,其中 t 为禁止放置的格子的数量。

接下来t行每行包含两个整数 x 和 y,表示位于第 x 行第 y 列的格子禁止放置,行列数从 1 开始。

输出
32

输出一个整数,表示结果。

数据范围

1≤N≤100, 0≤t≤100

思路:

每一个骨牌所遮住的两个棋盘方格的横纵坐标之和一定一个是奇数,一个是偶数。不可能出现两个都是奇数或两个都是偶数。

所以转化为二分图寻找最大匹配数的问题(匈牙利算法)。

代码实现:

#include<iostream>
#include<algorithm>
#include<vector>
#include<string.h>
using namespace std;
#define N 110
int n;
bool graph[N][N],st[N][N];
pair<int,int> match[N][N];
//记录当前节点匹配的节点
int dx[4]={0,-1,0,1};
int dy[4]={-1,0,1,0};
bool findPath(int i,int j)
{//匈牙利算法
    for(int k=0;k<4;k++)
    {
        int a=i+dx[k],b=j+dy[k];
        if(a<=n&&a>=1&&b<=n&&b>=1)
        {
            if(st[a][b]||graph[a][b])continue;
            st[a][b]=true;//标记当前节点已被访问
            pair<int,int> t=match[a][b];//获取当前节点的匹配访问
            if(t.first==0||findPath(t.first,t.second))
            {//若匹配节点为空或可以找到增广路径
                match[a][b]={i,j};//更新匹配节点
                return true;
            }
        }
    }
    return false;
}

int main()
{
    int t;
    cin>>n>>t;
    while(t--)
    {
        int x,y;
        cin>>x>>y;
        graph[x][y]=true;
    }
    int res=0;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if(graph[i][j])continue;
            else if((i+j)%2==1)
            {//一块骨牌一定会覆盖一个奇数点和一个偶数点
                memset(st,0,sizeof st);
                if(findPath(i,j))res++;
            }
        }
    }
    cout<<res<<endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值