蒙德冒险者的游戏

描述

蒙德城的一群冒险者计划进行一场特殊的表演以庆祝风神节。这场表演涉及到一项特别的挑战,即“冒险者塔”——一项测试冒险者们团队协作和个人承受能力的活动。

在“冒险者塔”表演中,参与者需要站在彼此的肩膀上,形成一个人类塔,以此展示他们的勇气和团队精神。每个冒险者都有自己的重量和承受能力(代表他们能承受多少重量而不至于受伤)。为了保证表演的安全性,组织者需要计算出一种参与者的排序方式,使得塔中任何一个冒险者承受的极限(即他们头上所有人的总重量减去他们的承受能力)尽可能小。

请你求取一个方案,使得所有冒险者承受的极限值中的最大值尽可能的小。

输入

第一行输入整数N,表示冒险者数量。

接下来N行,每行输入两个整数,表示每位冒险者的重量Wi和承受能力Si。

1≤N≤50000,1≤Wi≤10,000,1≤Si≤1,000,000,000

输出

输出一个整数,表示最大极限值的最小可能值。

输入样例 1

3
10 3
2 5
3 3

 输出样例2

2

思路:

这道题的原型是 “耍杂技的牛”,经典的贪心模板题。

我们考虑第i+1 个人在第 i 个人下面,则

Vi=W(1~i-1)-si       Vi+1=W(1~i)-si+1     若交换两人的位置则

Vi=W(1~i-1)-si+Wi+1     Vi+1=W(1~i-1) - si+1

考虑最优子结构,是否交换两人的位置取决于是否

W(1~i-1)-si+Wi+1<W(1~i)-si+1    即    -si+Wi+1<Wi-si+1    --》

Wi+1+si+1<Wi+si  ,此时需要交换两者的位置,因此我们只需要将原序列按照w+s升序排列即可

代码实现:

#include<iostream>
#include<stdio.h>
#include<vector>
#include<algorithm>
using namespace std;
bool comp(pair<int,int>& p1,pair<int,int> &p2)
{
    if(p1.first!=p2.first)return p1.first<p2.first;
    else
    {
        return p1.second<p2.second;
    }
}
int main()
{
    int N;
    cin>>N;
    vector<pair<int,int>> av;
    int sum=0;
    for(int i=0;i<N;i++)
    {
        int w=0,s=0;
        cin>>w>>s;
        av.push_back(make_pair(w+s,s));
    }
    sort(av.begin(),av.end(),comp);
    vector<pair<int,int>>::iterator it=av.begin();
    int res=-0x3f3f3f3f;
    while(it!=av.end())
    {
        int s=it->second;
        int w=(it->first)-s;
        int v=sum-s;
        res=max(v,res);
        sum+=w;
        it++;
    }
    cout<<res<<endl;
    return 0;
}

需要注意的是,我最开始用的是map容器,(因为它会根据key值自动排序),但是有个别测试点无法通过,这与map容器的底层逻辑有关,map是一个树形结构,无法处理key值相等的情况,也就是当key值相等时,map容器的排序是随机的,而我们需要在key值相等时,按照value值排序,也就是承受能力强的人在下方。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值