求逆元

本文详细介绍了如何求解一个数的模乘法逆元,包括利用费马小定理和扩展欧几里得算法两种方法。在质数模的情况下,可以通过费马小定理快速求逆;而对于一般情况,扩展欧几里得算法能有效找到逆元。此外,还探讨了在组合计数问题中逆元的应用。
摘要由CSDN通过智能技术生成

本博客主要讲解如何求一个数的乘法逆元。

定义

  对于任意整数 a , m , b a,m,b amb,若 a , m a,m am互质,且 a ∣ b a|b ab ,则存在一个整数 x x x 使得 b / a ≡ b × x ( m o d   m ) b/a\equiv b\times x(mod\ m) b/ab×x(mod m),则称 x x x a a a m m m 乘法逆元,记为 a − 1 ( m o d   m ) a^{-1}(mod\ m) a1(mod m)

求解

方法1:费马小定理

  因为 b / a ≡ b × a − 1 ≡ b / a × b × b − 1 ( m o d   m ) b/a\equiv b\times a^{-1}\equiv b/a \times b\times b^{-1}(mod\ m) b/ab×a1b/a×b×b1(mod m),所以 a × a − 1 ≡ 1 ( m o d   m ) a\times a^{-1}\equiv 1(mod\ m) a×a11(mod m)

  当 m m m 为质数(此时用 p p p 代替 m m m)且 a < p a<p a<p,依据费马小定理, a p − 1 ≡ 1 ( m o d   p ) a^{p-1}\equiv 1(mod\ p) ap11(mod p),即 a × a p − 2 ≡ 1 ( m o d   p ) a\times a^{p - 2} \equiv 1(mod\ p) a×ap21(mod p)。因此,当模数 p p p 为质数时, a p − 2 a^{p - 2} ap2 即为 a a a 的乘法逆元。

方法2:扩展欧几里得算法

  当仅保证 a , m a,m am互质时,我们可以通过求线性同余方程 a × x ≡ 1 ( m o d   m ) a\times x\equiv1(mod\ m) a×x1(mod m) 来得到所求的逆元。这一步很容易用扩展欧几里得算法来写。

ps

关于组合计数中所用的逆元,当其模数为质数时可以由另一种方法推出来。

首先,我们可以递推求出 k ! ( k ∈ [ 1 , n ] ) k!(k\in [1,n]) k!(k[1,n]),对于 n ! n! n! 我们可以用费马小定理来求出它的逆元。然后,我们反过来递推:由于 n ! n! n!的逆元相当模上 m m m 后的一个分母,所以我们可以由 ( n − 1 ) ! − 1 ( m o d   p ) = n − 1 ( m o d   p ) ] × n (n-1)!^{-1}(mod\ p) = n^{-1}(mod\ p)]\times n (n1)!1(mod p)=n1(mod p)]×n来求出 ( n − 1 ) − 1 ( m o d   p ) (n-1)^{-1}(mod\ p) (n1)1(mod p)从而求出所求的组合数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值