动态规划入门-----数字三角形

动态规划入门-----数字三角形

问题描述

给定一个由n行数字组成的数字三角形,如下图所示:
在这里插入图片描述

输出

从上到下最大的值的总和。

思路

这道题在动态规划里是入门级的题目,运用到了递归。
对于这道题共有两个思路,第一种是从上向下推,第二种是从下向上推。
先从第一种分析。

思路一

我们设这个二维数组为dp[][],在推导的时候我们先把递的公式写出来,从上向下退的话,zui(a[i][j])=max(zui(dp[i+1][j]),zui(dp[i+1][j+1]))+dp[i][j].
因为我们从(0,0)开始递归所以最开始i和j就设为0。

#include <bits/stdc++.h> 
using namespace std;
int dp[101][101];
int n;
int zui(int i,int j)
{
    int max1,max2;
    if(i==n-1)return dp[i][j]; //当i=n-1时不在进行以下操作,可以理解为归 
    max1 = zui(i+1,j);
    max2 = zui(i+1,j+1);
    return max(max1,max2)+dp[i][j];
}
int main()
{   
    int i=0, j=0;
    cin>>n;
    for(i=0;i<n;i++)
    {
        for(j=0;j<=i;j++)
        {
            cin>>dp[i][j];
        }
    }
    cout<<zui(0,0)<<endl;
}

思路二

第二种思路为从下向上推找出到达这一点时的最佳解,我们可以写出公式zui(a[i][j])=max(zui(a[i-1][j]),zuia[i-1][j])+a[i][j];
这里要特别注意当j=0和j=n-1,要做一次判断,

#include <bits/stdc++.h> 
using namespace std;
int dp[101][101];
int n;
int zui(int i,int j)
{
    int max1,max2;
    if(i==0)return dp[i][j];
    if(j==0)return zui(i-1,j)+dp[i][j];
    if(j==n-1)return zui(i-1,j-1)+dp[i][j];
    max1 = zui(i-1,j-1);
    max2 = zui(i-1,j);
    return max(max1,max2)+dp[i][j];
}
int main()
{   
    int i=0, j=0;
    cin>>n;
    for(i=0;i<n;i++)
    {
        for(j=0;j<=i;j++)
        {
            cin>>dp[i][j];
        }
    }
    int max3=0;
    for(int i=0;i<n;i++)
    {
        max3=max(max3,zui(n,i));
	} 
    cout<<max3<<endl;
}

这两个思路基本一致最重要的是对思考多尝试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值