动态规划入门-----数字三角形
问题描述
给定一个由n行数字组成的数字三角形,如下图所示:
输出
从上到下最大的值的总和。
思路
这道题在动态规划里是入门级的题目,运用到了递归。
对于这道题共有两个思路,第一种是从上向下推,第二种是从下向上推。
先从第一种分析。
思路一
我们设这个二维数组为dp[][],在推导的时候我们先把递的公式写出来,从上向下退的话,zui(a[i][j])=max(zui(dp[i+1][j]),zui(dp[i+1][j+1]))+dp[i][j].
因为我们从(0,0)开始递归所以最开始i和j就设为0。
#include <bits/stdc++.h>
using namespace std;
int dp[101][101];
int n;
int zui(int i,int j)
{
int max1,max2;
if(i==n-1)return dp[i][j]; //当i=n-1时不在进行以下操作,可以理解为归
max1 = zui(i+1,j);
max2 = zui(i+1,j+1);
return max(max1,max2)+dp[i][j];
}
int main()
{
int i=0, j=0;
cin>>n;
for(i=0;i<n;i++)
{
for(j=0;j<=i;j++)
{
cin>>dp[i][j];
}
}
cout<<zui(0,0)<<endl;
}
思路二
第二种思路为从下向上推找出到达这一点时的最佳解,我们可以写出公式zui(a[i][j])=max(zui(a[i-1][j]),zuia[i-1][j])+a[i][j];
这里要特别注意当j=0和j=n-1,要做一次判断,
#include <bits/stdc++.h>
using namespace std;
int dp[101][101];
int n;
int zui(int i,int j)
{
int max1,max2;
if(i==0)return dp[i][j];
if(j==0)return zui(i-1,j)+dp[i][j];
if(j==n-1)return zui(i-1,j-1)+dp[i][j];
max1 = zui(i-1,j-1);
max2 = zui(i-1,j);
return max(max1,max2)+dp[i][j];
}
int main()
{
int i=0, j=0;
cin>>n;
for(i=0;i<n;i++)
{
for(j=0;j<=i;j++)
{
cin>>dp[i][j];
}
}
int max3=0;
for(int i=0;i<n;i++)
{
max3=max(max3,zui(n,i));
}
cout<<max3<<endl;
}
这两个思路基本一致最重要的是对思考多尝试