膨胀与腐蚀在图像处理中的应用

膨胀和腐蚀是图像处理的基础,用于改变图像形状、大小和结构。膨胀扩张前景区域,腐蚀则收缩亮区域。常用于边缘检测、噪声去除和图像细化。通过Python与OpenCV库可实现这些操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

膨胀和腐蚀是数字图像处理中常用的基本操作,用于改变图像的形状、大小和结构。它们被广泛应用于图像增强、边缘检测、形态学处理等领域。本文将详细介绍膨胀和腐蚀的原理和应用,并提供相应的源代码示例。

  1. 膨胀(Dilation)
    膨胀是一种基本的形态学操作,可以扩张图像中的亮区域(前景),使其变大。膨胀操作基于结构元素(kernel)的滑动窗口,将窗口内的像素值设为窗口内的最大值。这样,图像中较亮的区域将逐渐扩展。

以下是一个使用Python和OpenCV库进行膨胀操作的示例代码:

import cv2
import numpy as np

# 读取图像
image = cv2.imread('input_image.jpg'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值