题意是:对于一个二维数组 默认是 m*m; 要求从一个点 开始出发,在不重复 的情况下 遍历 图中的所有的点,有多少种情况
深度遍历其实是一个非常费时间的算法,但是理解也算是很好理解的算法,
深度算法的用到的是递归的简单粗暴的方法! 当你理解了递归后,解决很多问题都能很简单粗暴了
什么是递归,递归 就是在不断的调用自己(也是在压栈的过程,结束的过程就是出栈的过程,而栈中保存的是变量,出栈的时候,则是将全局变量返回,局部变量不返回)
比如上面的题意,在每一点的时候 ,有四中情况选择, 只要到临界点的时候才会结束
什么是临界点,临界点就是完成一趟完整的遍历
否则的情况下选择下一个点,如果该点结束所有的查找,那么就是出栈 ,返回上一次调用自身调用的地方
// 深度优化搜索
#include <stdio.h>
#include <stdlib.h>
#define MAX_1 3 //用来设定循环最大数
#define MAX 4 //用来设置数组的大小,只需要改变以上两个值就可以了 保证 MAX = MAX_1 + 1,可以改变图的大小
int map[MAX][MAX]; //用二维数组来保存图
int book[MAX][MAX],m,n,add=2,sum; //标记已经访问过的点, add: 将以此增加访问过的点,sum: 总共的情况
int maxmax = MAX*MAX+1; //表示图中点的个数
int next[4][2]={ // 表示可能寻找的方向
{0,1},
{1,0},
{0,-1},
{-1,0}
};
int dfs(int a,int b)
{
int q,tx,ty;
if(add == maxmax && sum <= 5) // 用来显示前五个可能的情况
{
for(n=0;n<=MAX_1;n++)
{
for(m=0;m<=MAX_1;m++)
{
printf("%d\t",map[n][m]);
}
printf("\n");
}
sum++;
printf("-------------------\n");
}
if( add == maxmax && sum > 5) //
{
sum++;
}
for(q = 0;q <= 3; q++) //遍历所有能下一步的方向的点
{
tx = a + next[q][0];
ty = b + next[q][1];
if(tx > MAX_1 || ty > MAX_1 || tx < 0 || ty < 0 )
{
continue;
}
if(book[tx][ty] == 0)
{
map[tx][ty] = add;
add++;
book[tx][ty] = 1;
dfs(tx,ty);
book[tx][ty] = 0;
add--;
}
}
return;
}
int main()
{
int i,j,x,y ,x1,y1;
for(i=0;i<=MAX_1;i++)
{
for(j=0;j<=MAX_1;j++)
{
map[i][j] = 0;
}
}
for(i=0;i<=MAX_1;i++)
{
for(j=0;j<=MAX_1;j++)
{
book[i][j] = 0;
}
}
printf("输入起始点<两个数大小在 1-%d 之间>: ",MAX);
scanf("%d",&x1);
scanf("%d",&y1);
x = x1 - 1;
y = y1 - 1;
printf("x:%d y:%d \n",x,y);
map[x][y] = 1;
book[x][y] = 1;
dfs(x,y);
printf("总共有: %d情况\n",sum);
return 0;
}