乌云序列
题目描述
小可躺在草地上,看到头上飘过一团乌云。过了一会,这朵乌云向两侧分裂出了相同大小的云团,而分裂出的云团也逐渐地在重复这个过程。
看到这个分裂过程,小可突然想到了一个序列的构造方法,并将这种序列命名为“乌云序列”。小可将正中间的数字称为“核”。
对于每个乌云序列,假设核为n,那么这个序列为:核为n−1的乌云序列, n ,核为n−1的乌云序列
比如,核为1时,乌云序列为1
核为2时,乌云序列为1 2 1
核为3时,乌云序列为1 2 1 3 1 2 1
核为4时,乌云序列为1 2 1 3 1 2 1 4 1 2 1 3 1 2 1
…
给定核n,小可想知道这个乌云序列中第k个数是多少。
输入描述
只有两个正整数n,k(1≤n≤50,1≤k≤2n−1)
输出描述
输出核为n的乌云序列中第k个数是多少
样例1输入
3 2
样例1输出
2
样例2输入
4 8
样例2输出
4
代码
#include<iostream>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
using namespace std;
#define ll long long
ll n,k;
ll f[55],ans;
void so(ll n,ll k){
if(k==f[n-1]+1){
ans=n;
}
else if(k<=f[n-1]){
so(n-1,k);
}
else{
so(n-1,k-f[n-1]-1);
}
}
int main(){
cin>>n>>k;
f[1]=1;
for(int i=2;i<=50;i++){
f[i]=f[i-1]*2+1;
}
so(n,k);
cout<<ans;
return 0;
}
字符串的主宰者
题目描述
设�c是某个字符。如果说�c是某个字符串的主宰者,那么这个字符串符合如下条件:
-
如果这个字符串的长度为11,唯一的这个字符必须是�c。
-
如果字符串长度不为11,那么需要满足:左半部分全是�c,右半部分是由�+1c+1主宰的字符串;或者右半部分全是�c,左半部分是由�+1c+1主宰的字符串。
小可选定了字符�a作为自己的角色去征战字符串。每次操作小可可以将某个字符变成小可想要的字符。请问对于每个字符串,最少操作多少次可以让这个字符串变成由字符�a主宰的字符串?
比如cdbbaaaa
就是一个由字符�a主宰的字符串。
输入描述
第一行一个正整数�(1≤�≤10)t(1≤t≤10),代表有�t个字符串。
对于每个字符串,第一行一个正整数�(1≤�≤65536)n(1≤n≤65536),代表字符串的长度。
第二行一个只由小写字母构成的字符串。
保证�n是22的幂。
输出描述
对于每个字符串,如题输出答案。
样例输入
6
8
bbdcaaaa
8
asdfghjk
8
ceaaaabb
8
bbaaddcc
1
z
2
ac
样例输出
0
7
4
5
1
1
代码
#include<iostream>
#include<string>
#include<cstring>
using namespace std;
int t,n;
string s;
int so(int l,int r,char m){
if(l==r){
return !(s[l]==m);
}
int mid=(l+r)>>1;
int lcnt=0,rcnt=0;
for(int i=l;i<=mid;i++){
if(s[i]==m){
continue;
}
lcnt++;
}
for(int i=mid+1;i<=r;i++){
if(s[i]==m){
continue;
}
rcnt++;
}
return min(lcnt+so(mid+1,r,m+1),rcnt+so(l,mid,m+1));
}
int main(){
cin>>t;
while(t--){
cin>>n;
cin>>s;
cout<<so(0,n-1,'a')<<"\n";
}
return 0;
}
矩阵最大值
题目描述
小可有一个 n×n 的矩阵,其中,对于任意k(1≤k≤n),a[1][k]=a[k][1]=1。对于矩阵的其他元素,a[i][j]=a[i−1][j]+a[i][j−1]
请你求出矩阵的最大值。
输入描述
一个正整数n(1≤n≤10)
输出描述
如题,输出矩阵的最大值。
样例输入
5
样例输出
70
代码
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int a[15][15];
int n;
void aaa(int n){
for(int i=2;i<=n;i++){
for(int j=2;j<=n;j++){
a[i][j]=a[i-1][j]+a[i][j-1];
}
}
}
int main(){
cin>>n;
for(int i=1;i<=n;i++){
a[i][1]=1;
a[1][i]=1;
}
aaa(n);
int maxx=-0x3f3f3f3f;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
maxx=max(maxx,a[i][j]);
}
}
cout<<a[n][n];
return 0;
}
台阶问题
题目描述
有 N 级台阶,你一开始在底部,每次可以向上迈1∼K 级台阶,问到达第 N 级台阶有多少种不同方式。
输入描述
两个正整数 N,K(1≤N≤10∧5,1≤K≤100)。
输出描述
一个正整数 ans mod 100003,为到达第 N 级台阶的不同方式数。
样例输入
5 2
样例输出
8
代码
#include<iostream>
#include<cstdio>
using namespace std;
int n,k;
int a[100005];
int main(){
cin>>n>>k;
a[1]=1;
for(int i=2;i<=n;i++){
if(i<=k){
a[i]=1;
}
for(int j=max(1,i-k);j<i;j++){
a[i]=(a[i]+a[j])%100003;
}
}
printf("%d",a[n]);
return 0;
}
序列计数问题
题目描述
给定一个正整数n,请问有多少种序列,满足序列的每个元素都大于等于3,并且序列的元素之和等于n?
输入描述
一行一个整数n(1≤n≤2000)
输出描述
输出答案,对10∧9+7取模后输出。
样例输入1
7
样例输出1
3
样例输入2
1729
样例输出2
294867501
提示
第一个样例中,有三种序列:7
、3 4
、4 3
代码
#include<iostream>
#include<cstdio>
using namespace std;
const int mod=1e9+7;
int n;
int a[100005];
int main(){
cin>>n;
a[3]=1;
for(int i=4;i<=n;i++){
a[i]=1;
for(int j=3;j<=i-3;j++){
a[i]=(a[i]+a[j])%mod;
}
}
printf("%d",a[n]);
return 0;
}