1.2边缘检测示例
识别图像时我们可以通过边缘检测来抓住图像的变化,以便来抓住某些特征例如五官,肢体
将图像的每个像素的参数作为一个矩阵
根据如图的过滤器我们可以判断纵向是否有明显的边缘,两边一正一负是因为边缘总是一边明一边暗的,这样可以使中间一列的值与两边差值变大,更形象的表示边缘这个特征
1.5卷积步长
过滤器以其步长进行过滤,为了减少运算?还是为了防止过度拟合?
卷积后维度的计算式
1.6三维卷积
对多个通道同时进行卷积
根据选择还可以选择自己要在哪个颜色层里寻找边缘
1.7单层卷积网络
将卷积的形式类比到了回归函数,以实现神经网络
为了加深理解,我们来做一个练习。假设你有10个过滤器,而不是2个,神经网络的一层是3×3×3,那么,这一层有多少个参数呢?我们来计算一下,每一层都是一个3×3×3的矩阵,因此每个过滤器有27个参数,也就是27个数。然后加上一个偏差,用参数 b bb 表示,现在参数增加到28个。上一页幻灯片里我画了2个过滤器,而现在我们有10个,加在一起是28×10,也就是280个参数。
请注意一点,不论输入图片有多大,1000×1000也好,5000×5000也好,参数始终都是280个。用这10个过滤器来提取特征,如垂直边缘,水平边缘和其它特征。即使这些图片很大,参数却很少,这就是卷积神经网络的一个特征,叫作“避免过拟合”。你已经知道到如何提取10个特征,可以应用到大图片中,而参数数量固定不变,此例中只有28个,相对较少。
衍生了一下,多个过滤器会产生更多的通道
同时老师也设定了相应的参数
通过对卷积层的堆叠,我们就可以形成一个深度卷积神经网络