Pandas基本功能详解 | 轻松玩转Pandas(2)

本文详细讲解了Pandas的基本功能,包括查看数据、数据切片、统计描述、离散化、排序、函数应用、修改列/索引名称及类型操作。通过实例介绍了如何使用Pandas轻松处理数据,如使用 describe() 获取统计指标,利用 cut() 进行数据分桶,使用 sort_values() 进行排序,以及自定义函数应用到数据上等。
摘要由CSDN通过智能技术生成

教你学会 Pandas 不是我的目的,教你轻松玩转 Pandas 才是我的目的。我会通过一系列实例来带入 Pandas 的知识点,让你在学习 Pandas 的路上不再枯燥。

声明:我所写的轻松玩转 Pandas 教程都是免费的,如果对你有帮助,你可以持续关注我。

Pandas数据结构详解 | 轻松玩转Pandas(1) 介绍了 Pandas 中常用的两种数据结构 Series 以及 DataFrame,这里来看下这些数据结构都有哪些常用的功能。

# 导入相关库
import numpy as np
import pandas as pd

常用的基本功能

当我们构建好了 Series 和 DataFrame 之后,我们会经常使用哪些功能呢?来跟我看看吧。引用上一章节中的场景,我们有一些用户的的信息,并将它们存储到了 DataFrame 中。

因为大多数情况下 DataFrame 比 Series 更为常用,所以这里以 DataFrame 举例说明,但实际上很多常用功能对于 Series 也适用。

index = pd.Index(data=["Tom", "Bob", "Mary", "James"], name="name")

data = {
    "age": [18, 30, 25, 40],
    "city": ["BeiJing", "ShangHai", "GuangZhou", "ShenZhen"],
    "sex": ["male", "male", "female", "male"]
}

user_info = pd.DataFrame(data=data, index=index)
user_info
age city sex
name
Tom 18 BeiJing male
Bob 30 ShangHai male
Mary 25 GuangZhou female
James 40 ShenZhen male

一般拿到数据,我们第一步需要做的是了解下数据的整体情况,可以使用 info 方法来查看。

user_info.info()
Index: 4 entries, Tom to James
Data columns (total 3 columns):
age     4 non-null int64
city    4 non-null object
sex     4 non-null object
dtypes: int64(1), object(2)
memory usage: 128.0+ bytes

如果我们的数据量非常大,我想看看数据长啥样,我当然不希望查看所有的数据了,这时候我们可以采用只看头部的 n 条或者尾部的 n 条。查看头部的 n 条数据可以使用 head 方法,查看尾部的 n 条数据可以使用 tail 方法。

user_info.head(2)
age city sex
name
Tom 18 BeiJing male
Bob 30 ShangHai male

此外,Pandas 中的数据结构都有 ndarray 中的常用方法和属性,如通过 .shape 获取数据的形状,通过 .T 获取数据的转置。

user_info.shape
(4, 3)
user_info.T
name Tom Bob Mary James
age 18 30 25 40
city BeiJing ShangHai GuangZhou ShenZhen
sex male male female male

如果我们想要通过 DataFrame 来获取它包含的原有数据,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值