点击上方“AI派”,选择“设为星标”
最新分享,第一时间送达!
最新分享,第一时间送达!
编辑: 王老湿 作者: Leon Wang 作者简介: 现为中科院特别研究助理 (博士后),国内某软件行业领头企业 AI 部技术负责人,在 AI、数据科学和科学计算等方面相关的工程实践上积累了丰富的经验
随着深度学习框架以及云计算的普及,每隔一段时间就会被各种新出的算法刷爆朋友圈,比如之前的GAN、Bert、XLNet等,当我们想要去复现论文中的算法结果,或者打算将新算法落地去解决公司实际的业务问题时,这时候会遇到各种各样的问题,最常见的一个问题莫过于:代码环境或者代码版本不同,无法复现结果。这个问题往大了说其实就是工程问题。
由于我们大多数算法从业者其实所作的工作都是算法应用,也就是说使用已有的算法去解决实际的业务问题。想要完成这样的工作,工程能力必不可少。如果将AI中算法模型的训练比做炼丹的话,那么和算法模型相关的一些工程部分可以看作是炼丹炉。想要炼制一颗好用的丹药,没有一个好用的炼丹炉是万万不能的。