Poj.3268.Silver Cow Party
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
4 8 2 1 2 4 1 3 2 1 4 7 2 1 1 2 3 5 3 1 2 3 4 4 4 2 3Sample Output
10Hint
考点:最短路径,Dijkstra算法
#include<queue>
#include<vector>
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
struct Edge
{
int to;
int dis;
Edge(int to, int dis)
{
this -> to = to;
this -> dis = dis;
}
};
typedef pair<int,int>P;
int a,b,c;
int N,M,X;
int d1[1005],d2[1005]; //最短路径
vector<Edge> G1[1005]; //vector向量容器:在尾端插入和删除元素,时间复杂度O(1);其他位置O(n)
vector<Edge> G2[1005]; //vector向量容器:可动态调整所占的内存空间
void dijkstra(int s,int d[],vector<Edge> G[])
{
priority_queue<P,vector<P>,greater<P> >q;
d[s]=0;
q.push(P(0,s));
while(q.size())
{
P p=q.top();
q.pop();
int v=p.second;
for(int i=0; i<G[v].size(); i++)
{
Edge& e=G[v][i];
if(d[e.to]>d[v]+e.dis)
{
d[e.to]=d[v]+e.dis;
q.push(P(d[e.to],e.to));
}
}
}
}
int main()
{
memset(d1,0x5f,sizeof(d1));
memset(d2,0x5f,sizeof(d2));
scanf("%d%d%d",&N,&M,&X); //结点2·边数·终点
for(int i=1; i<=M; i++)
{
scanf("%d%d%d",&a,&b,&c);
G1[a].push_back(Edge(b,c)); //尾端插入新元素:牛a到牛b需要花费c时间
G2[b].push_back(Edge(a,c));
}
dijkstra(X,d1,G1); //双向求出两次X->m的最短路径
dijkstra(X,d2,G2);
int small_max=-1;
for(int i=1; i<=N; i++)
{
if(i==X) continue;
small_max=max(small_max,d1[i]+d2[i]); //两次最短路径相加即得到m->X->m的最短路径
}
cout<<small_max<<endl;
}