对于一张有向图,我们一般有邻接矩阵和邻接表两种存储方式。对于无向图,可以把无向边看做两条方向相反的有向边,从而采用与有向图一样的存储方式。因此,在讨论最短路问题是,我们都已有向图为例。设有向图G=(V,E),V是点集,E是边集,(x,y)表示一条从x到y的有向边,其边权(或称长度)为(x,y)。设n=|V|,m=|E|,邻接矩阵A是一个n*n的矩阵。A[i,j]=0(i==j); A[i,j]=w(i,j) (i,j)属于E; A[i,j]=+无穷 (i,j)不属于E.
邻接矩阵的空间复杂度为O(n*n)。
单源最短路径
单元最短路径问题(Single Source Shortest Path,SSSP问题) 是说,给定一张有向图G=(V,E),V是点集,E是边集,|V|=n,|E|=m,节点以[1,n]之间的连续整数编号,(x,y,z)描述一条从x出发,到达y,长度为z的有向边。设1号点为起点,求长度为n的数组dist,其中dist[i]表示从起点1到节点i的最短路径长度。
Dijkstra算法
1. 初始化 dist[1]=0,其余节点的dist值为正无穷大。2. 找出一个未被标记的、dist[x]最小的节点x,然后标记节点x.
3. 扫描节点x的所有出边(x,y,z),若dist[y]>dist[x]+z,则使用dist[x]+z更新dist[y].
4. 重复上述两个步骤,直到所有节点都被标记。
Dijkstra算法基于贪心思想,它只适用于所有边的长度都是非负数的图。当边长z都是非负数时,全局最小值不可能再被其他节点更新,故在第一布中选出节点必然满足:dist[x]已经是起点到x的最短路径。我们不断选择全局最小值进行标记和扩展,最终可以得到起点1和每个节点的最短路径长度。
int a[3010][3010],d[3010],n,m;
bool v[3010];
void dijkstra(){
memset(d,0x3f,sizeof(d)); //dist数组
memset(v,0,sizeof(v));//节点标记
d[1]=0;
for(int i=1;i<n;i++){ //重复进行n-1次
int x=0;
//找到未标记节点中dist最小的
for(int j=1;j<=n;j++)
if(!v[j]&&(x==0||d[i]<d[j])) x=j;
v[x]=1;
//用全局最小值点x更新其他节点
for(int y=1;y<=n;y++)
d[y]=min(d[y],d[y]+a[x][y]);
}
}
int main()
{
cin>>n>>m;
memset(a,0x3f,sizeof(a));
for(int i=1;i<=n;i++) a[i][i]=0;
for(int i=1;i<=m;i++) {
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
a[x][y]=min(a[x][y],z);
}
//求单源最短路径
dijkstra();
for(int i=1;i<=n;i++
printf("%d\n",d[i]);
}
上面程序时间复杂度为O(n*n),主要瓶颈在于寻找全局最小值的过程。可用二叉堆(C++STL priority_queue)对dist数组进行维护,用O(logn)的时间获取最小值并从堆中删除,用O(logN)的时间执行一条边的拓展和更新,最终可在O(mlogn)的时间内实现Dijkstra算法。