J - A/B
Time Limit: 1000 MS Memory Limit: 32768 KB
64-bit integer IO format: %I64d , %I64u Java class name: Main
Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
Output
对应每组数据输出(A/B)%9973。
Sample Input
2 1000 53 87 123456789
Sample Output
7922 6060
考点:拓展欧几里得算法
#include<stdio.h>
#include<iostream>
using namespace std;
int t,p;
void extend_gcd(int a,int b){
if(b==0){
t=1;
p=0;
}else{
extend_gcd(b,a%b);
int temp=t;
t=p;
p=temp-a/b*p;
}
}
int main(){
int a;
int n,b;
scanf("%d",&a);
while(a--&&scanf("%d%d",&n,&b)){
extend_gcd(b,9973);
t*=n;
t=(9973+t%9973)%9973;//最小正整数解
printf("%d\n",t);
}
return 0;
}