1,## KMP算法的来源? ##
由于朴素匹配算法非常低效,需要挨个遍历主串,所以有三位前辈,D.E.Knuth,J.H.Morris,和V.R.Pratt发表了一个模式匹配算法,可以大大避免重复遍历的情况,我们称这为克努特–莫里斯–普拉特算法,简称KMP算法。
2,## 何为KMP算法? ##
KMP算法在匹配过程中发生失配时,并不是简单的从原始串的下一个字符重新开始匹配,而是根据匹配过程中所得到的信息跳过不必要的匹配,从而达到高效的匹配算法。
下图主串为S串abcabcabcd,匹配串为T串abcabcd
当第一次匹配到S[6]!=T[6]时,主串不回溯,匹配串没有回溯到回0位置,而是回溯到下标为3的位置,继续匹配,直到匹配完成。
那为何匹配串会回溯到下标为3的位置呢?实际上KMP匹配算法实现了一个next数组,匹配串回溯到next数组对应下标所存储的位置,此时next[6] = 3。
3,## next数组的定义及计算 ##
(1),next数组的定义
next数组:存储的是匹配串匹配失败时回溯的位置
对于匹配串而言,满足匹配串中存在两个真子串相等,一个从0位置开始,一个以j-1位置结束,j为当前访问匹配串的下标,满足的公式是p0…pk-1 == pj-k..pj-1;k为next数组j下标所保存的值。
(2),next数组的计算
令next[0] = -1;next[1] = 0;next[j] = fun(next[j-1]);
根据p0…pk-1 = pj-k…pj-1公式可以求的,当next[j] = k;
next[j+1] 的值 就可以分为两种情况
if(pk == pj) next[j+1] = k+1; p0…pk = pj-k…pj
此时的pk就相当于sub[k],而pj也就相当于sub[j]
if(pk != pj) k = next[k] ,然后在判断pk与pj是否相等
如果pk与pj一直不相等,直到k=-1,那就让它执行next[j+1] = 0; 无相等的匹配串,直接回溯到匹配串的第一位
p[j] != p[k] 直到 k = -1,不能在回退了。
4,## next数组代码实现 ##
思路 : 用next[j]求next[j+1],依此类推
void get_next(char *sub,int *next,int length)
{
assert(sub != NULL && next != NULL);
if(length < 1)
return;
next[0] = -1;
next[1] = 0;
int j = 1; 通过next[j] 计算 next[j+1]
int k = 0;
while(j < length - 1)
{
if(k == -1 || sub[k] == sub[j]) //如果相等,next数组++,如果k==-1,让sub[j+1] = 0;回溯到0位置
{
next[++j] = ++k;
}
else
{
k = next[k];
}
}
}
5,## KMP算法代码实现 ##
思路 : KMP匹配算法实现了一个next数组,
在匹配的时候主串不回溯,匹配串回溯到next数组
对应下标所存储的位置,然后继续进行匹配,
直到匹配完毕。
int KMP(const char *str, const char* sub)
{
if(str == NULL || sub == NULL)
return -1;
int str_len = strlen(str);
int sub_len = strlen(sub);
if(sub_len > str_len || sub_len == 0)
return -1;
int next[255];
get_next(sub,next,sub_len); //得到next数组
int i = 0;
int j = 0;
while(i < str_len && j < sub_len)
{
//当j等于-1时,说明不匹配,主串后移,匹配串j++到0位置,继续匹配,直到匹配完毕
if(j == -1 || str[i] == sub[j]) //相等同时后移
{
++i;
++j
}
else
{
j = next[j]; //匹配串回溯到next数组所存储的位置
}
}
if(j >= sub_len)
return i - j;
return -1;
}
//测试一下 代码
int main()
{
char *str = "ababababc";
char *sub = "ababc";
int k = KMP(str,sub);
printf("%d\n",k);
return 0;
}
结果显示:从第四位开始匹配上了,例子很多,我这就只举一个啦,接下来让我看看KMP的时间复杂度。
6,## KMP算法的时间复杂度 ##
对于主串的长度为m,匹配串的长度为n,进行匹配,KMP的时间复杂度为O(m+n),相比于BF算法时间复杂度O(m*n)效率已经是提高的很多了。
对于KMP算法的优化,可以选择去优化next数组来实现,有兴趣的码友可以自己实现一下。