别说我不告诉你!如何用分库分表的-9种分布式主键ID-生成方案?挺全乎的(1)

本文详细解释了sharding-jdbc中SNOWFLAKE和UUID生成主键的方法,讨论了它们的优缺点,以及如何处理时钟回拨问题。同时介绍了自定义主键生成器和使用Tinyid实现分布式ID生成的实践。
摘要由CSDN通过智能技术生成

工作机器 id

spring.shardingsphere.sharding.tables.t_order.key-generator.props.worker.id=123

key-generator.column 表示主键字段,key-generator.type 为主键 ID 生成方案(内置或自定义的),key-generator.props.worker.id 为机器ID,在主键生成方案设为 SNOWFLAKE 时机器ID 会参与位运算。

在使用 sharding-jdbc 分布式主键时需要注意两点:

  • 一旦 insert 插入操作的实体对象中主键字段已经赋值,那么即使配置了主键生成方案也会失效,最后SQL 执行的数据会以赋的值为准。
  • 不要给主键字段设置自增属性,否则主键ID 会以默认的 SNOWFLAKE 方式生成。比如:用 mybatis plus@TableId 注解给字段 order_id 设置了自增主键,那么此时配置哪种方案,总是按雪花算法生成。

下面我们从源码上分析下 sharding-jdbc 内置主键生成方案 UUIDSNOWFLAKE 是怎么实现的。

UUID

打开 UUID 类型的主键生成实现类 UUIDShardingKeyGenerator 的源码发现,它的生成规则只有 UUID.randomUUID() 这么一行代码,额~ 心中默默来了一句卧槽

UUID 虽然可以做到全局唯一性,但还是不推荐使用它作为主键,因为我们的实际业务中不管是 user_id 还是 order_id 主键多为整型,而 UUID 生成的是个 32 位的字符串。

它的存储以及查询对 MySQL 的性能消耗较大,而且 MySQL 官方也明确建议,主键要尽量越短越好,作为数据库主键 UUID 的无序性还会导致数据位置频繁变动,严重影响性能。

public final class UUIDShardingKeyGenerator implements ShardingKeyGenerator {
private Properties properties = new Properties();

public UUIDShardingKeyGenerator() {
}

public String getType() {
return “UUID”;
}

public synchronized Comparable<?> generateKey() {
return UUID.randomUUID().toString().replaceAll(“-”, “”);
}

public Properties getProperties() {
return this.properties;
}

public void setProperties(Properties properties) {
this.properties = properties;
}
}

SNOWFLAKE

SNOWFLAKE(雪花算法)是默认使用的主键生成方案,生成一个 64bit的长整型(Long)数据。

sharding-jdbc 中雪花算法生成的主键主要由 4部分组成,1bit符号位、41bit时间戳位、10bit工作进程位以及 12bit 序列号位。

符号位(1bit位)

Java 中 Long 型的最高位是符号位,正数是0,负数是1,一般生成ID都为正数,所以默认为0

时间戳位(41bit)

41位的时间戳可以容纳的毫秒数是 2 的 41次幂,而一年的总毫秒数为 1000L * 60 * 60 * 24 * 365,计算使用时间大概是69年,额~,我有生之间算是够用了。

Math.pow(2, 41) / (365 * 24 * 60 * 60 * 1000L) = = 69年

工作进程位(10bit)

表示一个唯一的工作进程id,默认值为 0,可通过 key-generator.props.worker.id 属性设置。

spring.shardingsphere.sharding.tables.t_order.key-generator.props.worker.id=0000

序列号位(12bit)

同一毫秒内生成不同的ID。

时钟回拨

了解了雪花算法的主键 ID 组成后不难发现,这是一种严重依赖于服务器时间的算法,而依赖服务器时间的就会遇到一个棘手的问题:时钟回拨

为什么会出现时钟回拨呢?

互联网中有一种网络时间协议 ntp 全称 (Network Time Protocol) ,专门用来同步、校准网络中各个计算机的时间。

这就是为什么,我们的手机现在不用手动校对时间,可每个人的手机时间还都是一样的。

我们的硬件时钟可能会因为各种原因变得不准( 快了慢了 ),此时就需要 ntp 服务来做时间校准,做校准的时候就会发生服务器时钟的 跳跃 或者 回拨 的问题。

雪花算法如何解决时钟回拨

服务器时钟回拨会导致产生重复的 ID,SNOWFLAKE 方案中对原有雪花算法做了改进,增加了一个最大容忍的时钟回拨毫秒数。

如果时钟回拨的时间超过最大容忍的毫秒数阈值,则程序直接报错;如果在可容忍的范围内,默认分布式主键生成器,会等待时钟同步到最后一次主键生成的时间后再继续工作。

最大容忍的时钟回拨毫秒数,默认值为 0,可通过属性 max.tolerate.time.difference.milliseconds 设置。

最大容忍的时钟回拨毫秒数

spring.shardingsphere.sharding.tables.t_order.key-generator.max.tolerate.time.difference.milliseconds=5

下面是看下它的源码实现类 SnowflakeShardingKeyGenerator,核心流程大概如下:

最后一次生成主键的时间 lastMilliseconds 与 当前时间currentMilliseconds 做比较,如果 lastMilliseconds > currentMilliseconds则意味着时钟回调了。

那么接着判断两个时间的差值(timeDifferenceMilliseconds)是否在设置的最大容忍时间阈值 max.tolerate.time.difference.milliseconds内,在阈值内则线程休眠差值时间 Thread.sleep(timeDifferenceMilliseconds),否则大于差值直接报异常。

/**

  • @author xiaofu
    */
    public final class SnowflakeShardingKeyGenerator implements ShardingKeyGenerator{
    @Getter
    @Setter
    private Properties properties = new Properties();

public String getType() {
return “SNOWFLAKE”;
}

public synchronized Comparable<?> generateKey() {
/**

  • 当前系统时间毫秒数
    /
    long currentMilliseconds = timeService.getCurrentMillis();
    /
    *
  • 判断是否需要等待容忍时间差,如果需要,则等待时间差过去,然后再获取当前系统时间
    /
    if (waitTolerateTimeDifferenceIfNeed(currentMilliseconds)) {
    currentMilliseconds = timeService.getCurrentMillis();
    }
    /
    *
  • 如果最后一次毫秒与 当前系统时间毫秒相同,即还在同一毫秒内
    /
    if (lastMilliseconds == currentMilliseconds) {
    /
    *
  • &位与运算符:两个数都转为二进制,如果相对应位都是1,则结果为1,否则为0
  • 当序列为4095时,4095+1后的新序列与掩码进行位与运算结果是0
  • 当序列为其他值时,位与运算结果都不会是0
  • 即本毫秒的序列已经用到最大值4096,此时要取下一个毫秒时间值
    /
    if (0L == (sequence = (sequence + 1) & SEQUENCE_MASK)) {
    currentMilliseconds = waitUntilNextTime(currentMilliseconds);
    }
    } else {
    /
    *
  • 上一毫秒已经过去,把序列值重置为1
    */
    vibrateSequenceOffset();
    sequence = sequenceOffset;
    }
    lastMilliseconds = currentMilliseconds;

/**

  • XX…XX XX000000 00000000 00000000 时间差 XX
  •   XXXXXX XXXX0000 00000000	机器ID XX
    
  •              XXXX XXXXXXXX	序列号 XX
    
  • 三部分进行|位或运算:如果相对应位都是0,则结果为0,否则为1
    */
    return ((currentMilliseconds - EPOCH) << TIMESTAMP_LEFT_SHIFT_BITS) | (getWorkerId() << WORKER_ID_LEFT_SHIFT_BITS) | sequence;
    }

/**

  • 判断是否需要等待容忍时间差
    /
    @SneakyThrows
    private boolean waitTolerateTimeDifferenceIfNeed(final long currentMilliseconds) {
    /
    *
  • 如果获取ID时的最后一次时间毫秒数小于等于当前系统时间毫秒数,属于正常情况,则不需要等待
    /
    if (lastMilliseconds <= currentMilliseconds) {
    return false;
    }
    /
    *
  • ===>时钟回拨的情况(生成序列的时间大于当前系统的时间),需要等待时间差
    /
    /
    *
  • 获取ID时的最后一次毫秒数减去当前系统时间毫秒数的时间差
    /
    long timeDifferenceMilliseconds = lastMilliseconds - currentMilliseconds;
    /
    *
  • 时间差小于最大容忍时间差,即当前还在时钟回拨的时间差之内
    /
    Preconditions.checkState(timeDifferenceMilliseconds < getMaxTolerateTimeDifferenceMilliseconds(),
    “Clock is moving backwards, last time is %d milliseconds, current time is %d milliseconds”, lastMilliseconds, currentMilliseconds);
    /
    *
  • 线程休眠时间差
    */
    Thread.sleep(timeDifferenceMilliseconds);
    return true;
    }

// 配置的机器ID
private long getWorkerId() {
long result = Long.valueOf(properties.getProperty(“worker.id”, String.valueOf(WORKER_ID)));
Preconditions.checkArgument(result >= 0L && result < WORKER_ID_MAX_VALUE);
return result;
}

private int getMaxTolerateTimeDifferenceMilliseconds() {
return Integer.valueOf(properties.getProperty(“max.tolerate.time.difference.milliseconds”, String.valueOf(MAX_TOLERATE_TIME_DIFFERENCE_MILLISECONDS)));
}

private long waitUntilNextTime(final long lastTime) {
long result = timeService.getCurrentMillis();
while (result <= lastTime) {
result = timeService.getCurrentMillis();
}
return result;
}
}

但从 SNOWFLAKE 方案生成的主键ID 来看,order_id 它是一个18位的长整型数字,是不是发现它太长了,想要 MySQL 那种从 0 递增的自增主键该怎么实现呢?别急,后边已经会给出了解决办法!

自定义

sharding-jdbc 利用 SPI 全称( Service Provider Interface) 机制拓展主键生成规则,这是一种服务发现机制,通过扫描项目路径 META-INF/services 下的文件,并自动加载文件里所定义的类。

实现自定义主键生成器其实比较简单,只有两步。

第一步,实现 ShardingKeyGenerator 接口,并重写其内部方法,其中 getType() 方法为自定义的主键生产方案类型、generateKey() 方法则是具体生成主键的规则。

下面代码中用 AtomicInteger 来模拟实现一个有序自增的 ID 生成。

/**

  • @Author: xiaofu
  • @Description: 自定义主键生成器
    */
    @Component
    public class MyShardingKeyGenerator implements ShardingKeyGenerator {

private final AtomicInteger count = new AtomicInteger();

/**

  • 自定义的生成方案类型
    */
    @Override
    public String getType() {
    return “XXX”;
    }

/**

  • 核心方法-生成主键ID
    */
    @Override
    public Comparable<?> generateKey() {
    return count.incrementAndGet();
    }

@Override
public Properties getProperties() {
return null;
}

@Override
public void setProperties(Properties properties) {

}
}

第二步,由于是利用 SPI 机制实现功能拓展,我们要在 META-INF/services 文件中配置自定义的主键生成器类路劲。

com.xiaofu.sharding.key.MyShardingKeyGenerator

上面这些弄完我们测试一下,配置定义好的主键生成类型 XXX,并插入几条数据看看效果。

spring.shardingsphere.sharding.tables.t_order.key-generator.column=order_id
spring.shardingsphere.sharding.tables.t_order.key-generator.type=XXX

通过控制台的SQL 解析日志发现,order_id 字段已按照有序自增的方式插入记录,说明配置的没问题。

举一反九

既然可以自定义生成方案,那么实现分布式主键的思路就很多了,又想到之前我写的这篇 《9种 分布式ID生成方案》,发现可以完美兼容,这里挑选其中的 滴滴(Tinyid)来实践一下,由于它是个单独的分布式ID生成服务,所以要先搭建环境了。

Tinyid 的服务提供HttpTinyid-client 两种接入方式,下边使用 Tinyid-client 方式快速使用,更多的细节到这篇文章里看吧,实在是介绍过太多次了。

Tinyid 服务搭建

先拉源代码 https://github.com/didi/tinyid.git

由于是基于号段模式实现的分布式ID,所以依赖于数据库,要创建相应的表 tiny_id_infotiny_id_token 并插入默认数据。

CREATE TABLE tiny_id_info (
id BIGINT (20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT ‘自增主键’,
biz_type VARCHAR (63) NOT NULL DEFAULT ‘’ COMMENT ‘业务类型,唯一’,
begin_id BIGINT (20) NOT NULL DEFAULT ‘0’ COMMENT ‘开始id,仅记录初始值,无其他含义。初始化时begin_id和max_id应相同’,
max_id BIGINT (20) NOT NULL DEFAULT ‘0’ COMMENT ‘当前最大id’,
step INT (11) DEFAULT ‘0’ COMMENT ‘步长’,
delta INT (11) NOT NULL DEFAULT ‘1’ COMMENT ‘每次id增量’,
remainder INT (11) NOT NULL DEFAULT ‘0’ COMMENT ‘余数’,
create_time TIMESTAMP NOT NULL DEFAULT ‘2010-01-01 00:00:00’ COMMENT ‘创建时间’,
update_time TIMESTAMP NOT NULL DEFAULT ‘2010-01-01 00:00:00’ COMMENT ‘更新时间’,
version BIGINT (20) NOT NULL DEFAULT ‘0’ COMMENT ‘版本号’,
PRIMARY KEY (id),
UNIQUE KEY uniq_biz_type (biz_type)
) ENGINE = INNODB AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8 COMMENT ‘id信息表’;

CREATE TABLE tiny_id_token (
id INT (11) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT ‘自增id’,
token VARCHAR (255) NOT NULL DEFAULT ‘’ COMMENT ‘token’,
biz_type VARCHAR (63) NOT NULL DEFAULT ‘’ COMMENT ‘此token可访问的业务类型标识’,
remark VARCHAR (255) NOT NULL DEFAULT ‘’ COMMENT ‘备注’,
create_time TIMESTAMP NOT NULL DEFAULT ‘2010-01-01 00:00:00’ COMMENT ‘创建时间’,
update_time TIMESTAMP NOT NULL DEFAULT ‘2010-01-01 00:00:00’ COMMENT ‘更新时间’,
PRIMARY KEY (id)
) ENGINE = INNODB AUTO_INCREMENT = 1 DEFAULT CHARSET = utf8 COMMENT ‘token信息表’;

INSERT INTO tiny_id_token (id, token, biz_type, remark, create_time, update_time) VALUES (‘1’, ‘0f673adf80504e2eaa552f5d791b644c’, ‘order’, ‘1’, ‘2017-12-14 16:36:46’, ‘2017-12-14 16:36:48’);
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

img

最后

笔者已经把面试题和答案整理成了面试专题文档

image

image

image

image

image

image

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
…(img-K5a8wyRX-1713549170248)]

[外链图片转存中…(img-BV5l6MHr-1713549170249)]

[外链图片转存中…(img-shVOIDnL-1713549170249)]

[外链图片转存中…(img-EzN3W8VK-1713549170249)]

[外链图片转存中…(img-sCH2UdXV-1713549170249)]

[外链图片转存中…(img-fj2Tsv4W-1713549170249)]

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值