在SPSS中检验正态性和方差齐性是参数检验(如t检验、ANOVA)的前提步骤。以下是详细的操作流程:
一、正态性检验
方法1:Shapiro-Wilk检验(小样本推荐)或Kolmogorov-Smirnov检验(大样本)
-
菜单路径:
分析(Analyze) → 描述统计(Descriptive Statistics) → 探索(Explore)
-
界面操作:
- 将待检验的连续变量拖入右侧
因变量列表(Dependent List)
框。 - 若有分组变量(如比较组间正态性),拖入
因子列表(Factor List)
框。 - 点击 图(Plots…) 按钮,勾选:
- 正态性检验图(Normality plots with tests)
- (可选)茎叶图(Stem-and-leaf) 或 直方图(Histogram) 辅助观察。
- 点击 继续(Continue) → 确定(OK)。
- 将待检验的连续变量拖入右侧
-
结果解读:
- 在输出表格 “正态性检验(Tests of Normality)” 中:
- Shapiro-Wilk检验(适用于样本量≤50):若
Sig.
(p值)>0.05,认为满足正态性。 - K-S检验(适用于样本量>50):同理,p>0.05时接受正态性假设。
- Shapiro-Wilk检验(适用于样本量≤50):若
- 在输出表格 “正态性检验(Tests of Normality)” 中:
方法2:Q-Q图直观验证
- 同上进入
探索(Explore)
界面,在 图(Plots…) 中勾选 正态图(Q-Q图)。 - 若数据点近似落在对角线上,则提示正态性。
二、方差齐性检验
1. Levene检验(推荐,适用于t检验、ANOVA)
-
独立样本t检验中的方差齐性检验:
- 路径:
分析(Analyze) → 比较均值(Compare Means) → 独立样本T检验(Independent-Samples T Test)
。 - 在结果表格中自动输出 “Levene方差等同性检验”:
- 若
Sig.
≥0.05,认为方差齐。
- 若
- 路径:
-
ANOVA中的方差齐性检验:
- 路径:
分析(Analyze) → 比较均值(Compare Means) → 单因素ANOVA(One-Way ANOVA)
。 - 点击 选项(Options…),勾选 方差同质性检验(Homogeneity of variance test)。
- 结果中查看 “方差齐性检验” 表格,p>0.05时满足齐性。
- 路径:
2. 探索性分析中的方差齐性检验
- 在
探索(Explore)
界面中,点击 图(Plots…),勾选 “伸展与级别图(Spread vs. Level plots)” 下的 “Levene检验”。
三、关键注意事项
-
正态性检验选择:
- 小样本(n≤50)优先用Shapiro-Wilk,大样本用K-S检验(但对轻微偏离敏感)。
- 直方图/Q-Q图可辅助判断,尤其是边界情况(如p≈0.05时)。
-
方差齐性补充方法:
- 若Levene检验不显著(p>0.05)但图形显示方差差异明显,建议结合Welch校正的t检验或ANOVA(不依赖方差齐性)。
-
不满足条件的处理:
- 非正态:改用非参数检验(如Mann-Whitney U、Kruskal-Wallis)。
- 方差不齐:在t检验中选择“不假设等方差”结果,或ANOVA中使用Welch校正。
操作示例截图
-
正态性检验输出:
(红框内为Shapiro-Wilk的p值) -
方差齐性检验输出:
(若p≥0.05,选择“假定等方差”行的结果)
通过以上步骤,可系统验证数据是否满足参数检验的前提假设,并据此选择正确的统计方法。