multiprocessing模块包含一个API,它基于threading API可以在多个进程间划分工作。有些情况下,multiprocessing可以作为临时替换,取代threading来利用多个CPU内核,避免全局解释器锁带来的性能瓶颈。
1. multiprocessing基础
创建进程(MP.Process)
要创建第二个进程,最简单的方法是实例化一个Process对象,并调用start()让其工作。
import multiprocessing
def worker():
print 'Worker'
return
if __name__ == '__main__':
jobs = []
for i in range(5):
p = multiprocessing.Process(target = worker)
jobs.append(p)
p.start()
执行结果将会打印5次‘Worker',不过不清楚孰先孰后,这取决于具体的执行顺序,因为每个进程都在竞争访问输出流。更有用的做法是,创建一个进程时可以提供参数。与threading不同,要向一个multiprocessing Process传递参数,这个参数必须能够使用pickle串行化。下面的例子向各个工作进程传递一个要打印的数。
import multiprocessing
import time
def worker(num):
print "Worker", num
time.sleep(0.1)
return
if __name__ == '__main__':
jobs = []
for i in range(5):
p = multiprocessing.Process(target = worker, args = (i,))
jobs.append(p)
p.start()
Worker 0
Worker 2
Worker 3
Worker 4
Worker 1
可导入的目标函数
threading与multiprocessing例子之间有一个区别,multiprocessing例子中对__main__使用了额外的保护。对于新进程的启动方式,要求子进程能够导入包含目标函数的脚本。可以讲应用的主要部分包装在一个__main__检查中,确保模块导入时不会在各个子进程中递归地运行。另外一个方法是从一个单独的脚本中导入目标函数,下面例子中进程的工作函数是simple.py中worker函数:
import multiprocessing
import simple
if __name__ == '__main__':
jobs = []
for i in range(5):
p = multiprocessing.Process(
target = simple.worker,