Python-multiprocessing进程管理

本文介绍了Python的multiprocessing模块,重点讲解了如何创建进程、设置守护进程、终止进程及检查进程退出状态,还涉及日志、派生进程、消息传递和线程池等内容,旨在帮助理解并有效利用多进程提升性能。
摘要由CSDN通过智能技术生成

multiprocessing模块包含一个API,它基于threading API可以在多个进程间划分工作。有些情况下,multiprocessing可以作为临时替换,取代threading来利用多个CPU内核,避免全局解释器锁带来的性能瓶颈。

1. multiprocessing基础


创建进程(MP.Process)

要创建第二个进程,最简单的方法是实例化一个Process对象,并调用start()让其工作。
import multiprocessing

def worker():
    print 'Worker'
    return

if __name__ == '__main__':
    jobs = []
    for i in range(5):
        p = multiprocessing.Process(target = worker)
        jobs.append(p)
        p.start()

执行结果将会打印5次‘Worker',不过不清楚孰先孰后,这取决于具体的执行顺序,因为每个进程都在竞争访问输出流。更有用的做法是,创建一个进程时可以提供参数。与threading不同,要向一个multiprocessing Process传递参数,这个参数必须能够使用pickle串行化。下面的例子向各个工作进程传递一个要打印的数。
import multiprocessing
import time

def worker(num):
    print "Worker", num
    time.sleep(0.1)
    return

if __name__ == '__main__':
    jobs = []
    for i in range(5):
        p = multiprocessing.Process(target = worker, args = (i,))
        jobs.append(p)
        p.start()
Worker 0
Worker 2
Worker 3
Worker 4
Worker 1

可导入的目标函数

threading与multiprocessing例子之间有一个区别,multiprocessing例子中对__main__使用了额外的保护。对于新进程的启动方式,要求子进程能够导入包含目标函数的脚本。可以讲应用的主要部分包装在一个__main__检查中,确保模块导入时不会在各个子进程中递归地运行。另外一个方法是从一个单独的脚本中导入目标函数,下面例子中进程的工作函数是simple.py中worker函数:
import multiprocessing
import simple

if __name__ == '__main__':
    jobs = []
    for i in range(5):
        p = multiprocessing.Process(
                target = simple.worker,
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值