将数组数据转为excel表导出

这篇博客介绍了如何在Vue项目中使用`vue-element-admin`的`export2Excel.js`和`XLSX`库将表格数据导出为Excel文件。首先,安装必要的npm包,然后定义函数将HTML表格转换为二维数组,处理合并单元格和自适应列宽。最后,通过`XLSX`库创建工作簿并写入数据,生成二进制内容并使用`File-Saver`保存为`.xlsx`文件。同时提供了处理数据的辅助函数和导出JSON数据到Excel的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安装xlsx依赖

npm install xlsx --save

npm install file-saver script-loader --save

使用vue-element-admin 中的src/vendor/export2Excel.js

/* eslint-disable */
import { saveAs } from 'file-saver'
import XLSX from 'xlsx'
 
function generateArray(table) {
  var out = [];
  var rows = table.querySelectorAll('tr');
  var ranges = [];
  for (var R = 0; R < rows.length; ++R) {
    var outRow = [];
    var row = rows[R];
    var columns = row.querySelectorAll('td');
    for (var C = 0; C < columns.length; ++C) {
      var cell = columns[C];
      var colspan = cell.getAttribute('colspan');
      var rowspan = cell.getAttribute('rowspan');
      var cellValue = cell.innerText;
      if (cellValue !== "" && cellValue == +cellValue) cellValue = +cellValue;
 
      //Skip ranges
      ranges.forEach(function (range) {
        if (R >= range.s.r && R <= range.e.r && outRow.length >= range.s.c && outRow.length <= range.e.c) {
          for (var i = 0; i <= range.e.c - range.s.c; ++i) outRow.push(null);
        }
      });
 
      //Handle Row Span
      if (rowspan || colspan) {
        rowspan = rowspan || 1;
        colspan = colspan || 1;
        ranges.push({
          s: {
            r: R,
            c: outRow.length
          },
          e: {
            r: R + rowspan - 1,
            c: outRow.length + colspan - 1
          }
        });
      };
 
      //Handle Value
      outRow.push(cellValue !== "" ? cellValue : null);
 
      //Handle Colspan
      if (colspan)
        for (var k = 0; k < colspan - 1; ++k) outRow.push(null);
    }
    out.push(outRow);
  }
  return [out, ranges];
};
 
function datenum(v, date1904) {
  if (date1904) v += 1462;
  var epoch = Date.parse(v);
  return (epoch - new Date(Date.UTC(1899, 11, 30))) / (24 * 60 * 60 * 1000);
}
 
function sheet_from_array_of_arrays(data, opts) {
  var ws = {};
  var range = {
    s: {
      c: 10000000,
      r: 10000000
    },
    e: {
      c: 0,
      r: 0
    }
  };
  for (var R = 0; R != data.length; ++R) {
    for (var C = 0; C != data[R].length; ++C) {
      if (range.s.r > R) range.s.r = R;
      if (range.s.c > C) range.s.c = C;
      if (range.e.r < R) range.e.r = R;
      if (range.e.c < C) range.e.c = C;
      var cell = {
        v: data[R][C]
      };
      if (cell.v == null) continue;
      var cell_ref = XLSX.utils.encode_cell({
        c: C,
        r: R
      });
 
      if (typeof cell.v === 'number') cell.t = 'n';
      else if (typeof cell.v === 'boolean') cell.t = 'b';
      else if (cell.v instanceof Date) {
        cell.t = 'n';
        cell.z = XLSX.SSF._table[14];
        cell.v = datenum(cell.v);
      } else cell.t = 's';
 
      ws[cell_ref] = cell;
    }
  }
  if (range.s.c < 10000000) ws['!ref'] = XLSX.utils.encode_range(range);
  return ws;
}
 
function Workbook() {
  if (!(this instanceof Workbook)) return new Workbook();
  this.SheetNames = [];
  this.Sheets = {};
}
 
function s2ab(s) {
  var buf = new ArrayBuffer(s.length);
  var view = new Uint8Array(buf);
  for (var i = 0; i != s.length; ++i) view[i] = s.charCodeAt(i) & 0xFF;
  return buf;
}
 
export function export_table_to_excel(id) {
  var theTable = document.getElementById(id);
  var oo = generateArray(theTable);
  var ranges = oo[1];
 
  /* original data */
  var data = oo[0];
  var ws_name = "SheetJS";
 
  var wb = new Workbook(),
    ws = sheet_from_array_of_arrays(data);
 
  /* add ranges to worksheet */
  // ws['!cols'] = ['apple', 'banan'];
  ws['!merges'] = ranges;
 
  /* add worksheet to workbook */
  wb.SheetNames.push(ws_name);
  wb.Sheets[ws_name] = ws;
 
  var wbout = XLSX.write(wb, {
    bookType: 'xlsx',
    bookSST: false,
    type: 'binary'
  });
 
  saveAs(new Blob([s2ab(wbout)], {
    type: "application/octet-stream"
  }), "test.xlsx")
}
 
export function export_json_to_excel({
  multiHeader = [],
  header,
  data,
  filename,
  merges = [],
  autoWidth = true,
  bookType = 'xlsx'
} = {}) {
  /* original data */
  filename = filename || 'excel-list'
  data = [...data]
  data.unshift(header);
 
  for (let i = multiHeader.length - 1; i > -1; i--) {
    data.unshift(multiHeader[i])
  }
 
  var ws_name = "SheetJS";
  var wb = new Workbook(),
    ws = sheet_from_array_of_arrays(data);
 
  if (merges.length > 0) {
    if (!ws['!merges']) ws['!merges'] = [];
    merges.forEach(item => {
      ws['!merges'].push(XLSX.utils.decode_range(item))
    })
  }
 
  if (autoWidth) {
    /*设置worksheet每列的最大宽度*/
    const colWidth = data.map(row => row.map(val => {
      /*先判断是否为null/undefined*/
      if (val == null) {
        return {
          'wch': 10
        };
      }
      /*再判断是否为中文*/
      else if (val.toString().charCodeAt(0) > 255) {
        return {
          'wch': val.toString().length * 2
        };
      } else {
        return {
          'wch': val.toString().length
        };
      }
    }))
    /*以第一行为初始值*/
    let result = colWidth[0];
    for (let i = 1; i < colWidth.length; i++) {
      for (let j = 0; j < colWidth[i].length; j++) {
        if (result[j]['wch'] < colWidth[i][j]['wch']) {
          result[j]['wch'] = colWidth[i][j]['wch'];
        }
      }
    }
    ws['!cols'] = result;
  }
 
  /* add worksheet to workbook */
  wb.SheetNames.push(ws_name);
  wb.Sheets[ws_name] = ws;
 
  var wbout = XLSX.write(wb, {
    bookType: bookType,
    bookSST: false,
    type: 'binary'
  });
  saveAs(new Blob([s2ab(wbout)], {
    type: "application/octet-stream"
  }), `${filename}.${bookType}`);
}

 准备数据

// 处理表格数据,由于数组中对象的key多为英文格式,需要转换为中文标题
formatData(list) {
    const map = {
        '_id': '序号',
        'name': '名称',
        'mumber': '数量'
    };
    let header = [];
    let data = [];
    // 利用数组第一个对象的数据设置标题
    const one = list[0];
    if (!one) { // 当数组没有数据时,表格标题及内容都为空
        return {header, data};
    }
    header = Object.keys(one).map(key => {
        return map[key];
    });
    // data把list中每一个对象转成 对应的value数组
    data = list.map(obj => {
        return Object.values(obj);
    });
    return {header, data};
}

引入js文件,下载excel文件

import('@/utils/export2Excel').then(excel => {
    const {header, data} = this.formatData(list); // 此处list为要转换的数组数据
    // excel表示导入的模块对象
    excel.export_json_to_excel({
        header: header, // 表格头数据
        data: data, // 表格数据
        filename: '服务排名', // 文件名称
        autoWidth: true, // 宽度是否自适应
        bookType: 'xlsx' // 生成的文件类型
    });
});

### 使用Matlab将ERA5 NetCDF文件数据导出Excel 为了实现这一目标,可以按照如下方法处理ERA5的NetCDF (`.nc`) 文件并将所需数据保存为Excel格式。这涉及读取NetCDF文件中的变量,并将其写入Excel工作。 #### 准备环境 确保安装了必要的工具箱来支持NetCDF文件的操作以及向Excel文件写入的能力。通常情况下,默认版本的MATLAB已经包含了`ncread`函数用于读取NetCDF文件的内容[^1]。 #### 加载NetCDF文件 利用 `ncread` 或者更高级别的接口如 `netcdf.open` 和 `netcdf.getVar` 来打开和提取所需的变量: ```matlab % 打开NetCDF文件并获取特定变量的数据 filename = 'path_to_era5_file.nc'; % 替换为实际路径 variableName = 'temperature'; % 假设要读取温度字段, 需替换为目标变量名 data = ncread(filename, variableName); ``` 对于多维数组(例如时间序列),可能还需要指定维度索引来选取感兴趣的时间点或其他参数。 #### 处理数据结构 根据需求调整数据形状或筛选不必要的部分。比如降采样、计算统计量等预处理步骤可以在该阶段完成。 #### 导出Excel 最后一步就是调用 MATLAB 的内置功能将上述获得的结果存储于 Excel 格内: ```matlab % 创建一个新的Excel文件并向其中添加sheet页 outputFile = 'exported_data.xlsx'; writematrix(data, outputFile); % 对于简单的二维矩阵可以直接这样操作 ``` 当面对复杂的数据集时,建议先检查数据的具体形式,必要时可采用更为灵活的方式构建输出格,例如使用 cell 数组组合不同类型的列/行标签与数值一起写出。 以上过程展示了如何从 ERA5 提供的 NetCDF 数据集中抽取信息并通过 MATLAB 换成易于分享和进一步分析的形式——即 Microsoft Excel 工作簿。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值