matlab二分法小题
方程y=sinx在区间[-1,2]有唯一实根,若用二分法求根,并要求误差不得超过10^6,需要多少次二分?
tol=0.000001;%容差
a=-1;%输入两个端点值
b=2;
ya=feval(@f,a);%把a赋给ya
yb=feval(@f,b);
max=round((log(b-a)-log(tol))/log(2))%最大迭代次数
if yayb>0
fprintf(“二分法不适用”)
else
for k=1:max%循环
c=(a+b)/2
yc=feval(@f,c);
if yc==0
b=c;
a=c;
elseif ycyb>0
b=c;
else
a=c;
end
err(k)=b-a;
if err(k)<tol
break
end
end
fprintf(“结果为:%f”,(a+b)/2);%该步位置不同,会使循环次数不同
end
function [y]=f(x)
y=sin(x);
end