泛读
一、背景
基于会话的推荐:旨在根据匿名用户的简短行为序列预测其想要购买的物品
然而,在基于会话的推荐中加入价格偏好是非常重要的。
①:很难处理商品各种特征的异构信息来捕捉用户的价格偏好。
②:在确定用户选择时,很难对价格和兴趣偏好之间的复杂关系建模
二、方法概要
我们提出了一种新的基于会话的推荐方法——Coguided异构超图网络(CoHHN)。
①:
针对第一个挑战,设计了一个异构超图来表示异构信息和它们之间丰富的关系。然后设计了一种双通道聚合机制来聚合异构超图中的各种信息。
②:
设计了一个共同引导学习方案来模拟价格和兴趣偏好之间的关系,并增强彼此的学习
在三个真实数据集上进行的大量实验证明了该方法的有效性。进一步的分析揭示了价格对于基于会话的推荐的重要性。
三、会话的由来
传统的RS通常使用用户的长期行为来相应地预测其未来的行为。然而,在许多情况下,由于隐私政策或非登录性质,用户的肖像和她丰富的历史行为数据不可用。
为了解决这个问题,提出了基于会话的建议(SBR),以预测匿名用户在当前会话中基于有限交互(例如,单击的项目及其相关特征)的行为
四、 现有会话的挑战及解决方法
现有的SBR方法侧重于建模用户的兴趣偏好,即用户对某个项目的喜欢程度
但这些方法都忽略了一个非常重要的因素,即用户的价格偏好,其目的是描述用户愿意为一个项目支付多少钱
因此,在预测用户行为时,应考虑用户的价格偏好。然而,在模拟用户对SBR的价格偏好时,我们面临两个主要挑战。
1、如何处理此类异构信息
场景: 例如用户可能会为了提高计算机性能购买昂贵的计算机,但是会买一件价格合理的睡衣在家里穿
在考虑用户的价格偏好时,我们需要考虑相应的项目类别。这样,将涉及多种类型的信息来描述用户的历史行为,包括一系列项目、项目价格和项目类别
方法:
一种直观的方法是直接应用最先进的基于异构图的方法来建模异构信息
但是,例如<项目、价格、类别>之间的关系。这种复杂的高阶依赖可能会导致基于图的通用异构方法失败。
①:受异类图和超图的启发,本文提出了一种异类超图网络,它结合了异类图在建模异类信息方面的优势和超图在捕获复杂的高阶依赖关系方面的优势,来处理SBR中的异类信息
②:我们定义了三种类型的超边,即特征超边、价格超边和会话超边,用于表示不同节点之间的多类型关系。然后设计了一种双通道聚合机制,通过特征超边传播节点嵌入。基于学习到的节点嵌入,我们分别通过价格和会话超边缘应用注意层来提取原始价格和兴趣偏好。
2、如何建模价格和利息偏好之间的复杂关系
场景:用户可能出于强烈的兴趣购买昂贵的物品,即使物品的价格超出了她的预期。在这种情况下,用户由于兴趣浓厚而调整其价格偏好。同样,用户也会购买一些因价格低廉而不喜欢的商品
方法:
我们在从异构超图网络中学习到的原始价格和兴趣偏好的基础上,进一步使这两个偏好相互引导,以丰富它们的语义。最后,Cohn根据商品特征和用户的价格和兴趣偏好进行推荐。
五、贡献
1、我们强调价格因素在决定用户行为中的重要性,并考虑价格和兴趣偏好来预测SBR中的用户行为
2、我们提出了一种新的方法,称为共引导异构超图网络(CoHHN),用于建模价格偏好、兴趣偏好以及它们之间的关系,以进一步提高SBR的性能
3、在三个公共基准上的大量实验表明,与最先进的方法相比,我们提出的COHN方法具有优越性。进一步的分析也证明了价格因素在SBR中的重要性
六、相关说明
工作重点
1、异构图和超图
异构图已被证明在处理异构信息方面是有效的。例如,Fan等人提出了一种异构图中的元路径引导方法,用于意图推荐。
超图是一个超边可以连接两个以上节点的图。这一独特功能使其能够捕获节点之间的复杂高阶依赖关系,尤其是在推荐任务中。HyperRec[35]利用超图的这种能力为下一个项目推荐建立短期用户偏好模型
1、问题定义
2、价格离散化
物品的绝对价格不足以确定物品是否昂贵
场景:例如,200美元可能是一部手机的便宜货,但同样的价格对于一盏台灯来说是非常高的
我们必须根据项目类别将项目价格离散为不同的价格水平,以便在不同类别之间进行比较
对于一个项目
x
i
x_{i}
xi,他的价格范围是
[
m
i
n
,
m
a
x
]
[min,max]
[min,max],我们确定他的价格水平如下
这里的
Φ
(
x
)
\Phi(x)
Φ(x)是物流分布的累积分布函数,定义如下:
3、 构造异构超图
自定义异构超图:
G
=
(
V
,
E
)
G=(V,E)
G=(V,E)
V | 表示所有节点 |
---|---|
E | 超边集合 |
v τ ∈ V v^{\tau}\in V vτ∈V | 每个节点的类型 |
V = V P ∪ V i d ∪ V C V=V^{P}\cup V^{id}\cup V^{C} V=VP∪Vid∪VC | 节点类型包括商品价格、ID、类别 |
我们定义了以下三种类型的超边来表示各种节点之间的多类型关系
1、特征超边连接项目的所有特征
2、价格超边连接会话中所有项目的价格节点
3、会话超边连接会话中所有项目的ID节点
我们利用特征超边来传播异构节点的嵌入。价格和会话超边缘分别用于提取用户的价格和兴趣偏好。如果两个节点通过超边连接,则它们是相邻的
4、 双通道聚合机制(*)
在构建的异构超图中,目标节点可以与多种类型的节点相邻。很明显,相同类型的节点包含同质的信息,不同的类型有不同的语义。因此,将消息聚合总结为两个通道,即类型内通道和类型间通道。在类型内通道中,对于一个目标节点,相同类型的相邻节点具有不同的重要性。在跨类型通道中,不同类型可能对目标节点产生不同的影响。双通道聚合机制来聚合来自两个通道的信息。
类型内聚合
类型间聚合
5、偏好提取
提取价格偏好
提取兴趣偏好
6、协同引导学习模式
基于以上求得的价格偏好和兴趣偏好