自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 收藏
  • 关注

原创 Graph学习笔记

复杂的图2.1 异构图同构图只有一种节点类型,一种边的类型。异构图即边与节点的类型都不止一种的图。二分图:G={V,E}\mathcal G=\left\{\mathcal V,\mathcal E\right\}G={V,E},节点集V\mathcal VV可以被划分为两类V1\mathcal V_{1}V1​,V2\mathcal V_{2}V2​,图里的边只存在与这两个集的节点的相互连接。多维图:在许多现实世界的图形中,一对节点之间可以同时存在多个关系。比如电商网站里用户与商品之间的关系可以

2021-04-19 00:20:10 1252 5

原创 阅读笔记-蛋白质序列预训练ESM

阅读笔记-Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences概要数据与模型同源性建模概要         \,\,\,\,\,\,\,\,\,数十年来,公共数据库中蛋白质序列数量的增长呈指数趋势,从而深入了解了整个生命中蛋白质序列的广度和多样性。 该数据为使用人工智能研究生物学的预测和生成模型提供了有希望的基础。 本文的重点是使单个模型适合

2021-02-20 00:27:35 11414

原创 阅读笔记--Protein PreTrain

阅读笔记--Pre-training Protein Language Models withLabel-Agnostic Binding Pairs Enhances Performancein Downstream Tasks1、预备知识1.1 Longformer1.2 BPE介绍2、相关工作3、方法2.1 数据集下游任务单个的蛋白质序列分类成对蛋白质序列分类token级分类(序列标注)1、预备知识1.1 LongformerLongformer是一种可高效处理长文本的模型,传统Transfor

2020-12-19 20:16:44 825 1

原创 阅读笔记--TAPE--NIPS2019

阅读笔记蛋白质介绍蛋白质的基础问题蛋白质家族概要方法数据集蛋白质介绍蛋白质对于生物的运转必不可少,从运输氧气的血红蛋白到人眼中的感光蛋白,从运输离子的输运蛋白到肌肉中的肌肉蛋白,它们的存在为生命造就多姿多彩的发展。理解蛋白质的结构和损坏机理不仅能够让我们对疾病的分子学机理有着更好的了解,更能帮助我们找到更好的方式对抗疾病!蛋白质除了是维生的必要物质,更是生产各种抗体和疫苗的有效方式,同时还可以通过个性化改造让细菌具有分解废物的能力,生产出具有去污功效的酶。如果能够更深入地理解蛋白质,更多的新功能就可以被

2020-12-18 16:26:11 1262

原创 阅读笔记--ICML2020--A Generative Model for Molecular Distance Geometry

阅读笔记--ICML2020--A Generative Model for Molecular Distance Geometry

2020-12-05 14:30:29 246

原创 阅读笔记-Iterative Refinement in the Continuous Spacefor Non-Autoregressive Neural Machine Translation

阅读笔记-Iterative Refinement in the Continuous Spacefor Non-Autoregressive Neural Machine Translation1、1、

2020-10-30 00:39:08 588

原创 阅读笔记-分子图benchmark

阅读笔记-图benchmarkogbn-proteins: Protein-Protein Association Networkogbl-ddi: Drug-Drug Interaction Networkogbl-biokg: Biomedical Knowledge Graphogbn-proteins: Protein-Protein Association Networkogbn-proteins:无向,带权重,多种边类型的图结构。节点代表着蛋白质分子,边表示蛋白质之间不同类型的有生物学意义的

2020-10-22 01:09:41 3025

原创 EMNLP’19-Mask-Predict: Parallel Decoding of Conditional Masked Language Models

Mask-Predict: Parallel Decoding ofConditional Masked Language Models·

2020-10-12 23:47:21 1188

原创 阅读笔记--MolGAN: An implicit generative model for small molecular graphs

Deterministic policy gradients在药物生成中,我们生成的分子,不仅要满足化学定义,而且要有一些有用的性质(比如说易于合成)。而这种目标对于训练过程来说其实是不可微的,所以需要引入强化学习来优化那些不可微的指标的生成过程。生成器作者发现预先选择最大尺寸的图,可以以更快的速度训练,并且也更容易优化。...

2020-10-05 23:52:24 3683 1

原创 阅读笔记-KDD2020-MoFlow: An Invertible Flow Model for Generating Molecular Graphs

阅读笔记-MoFlow: An Invertible Flow Model for Generating Molecular Graphs

2020-09-30 23:58:13 1766

原创 阅读笔记-A Graph to Graphs Framework for Retrosynthesis Prediction

A Graph to Graphs Framework for Retrosynthesis Prediction

2020-09-29 14:12:38 829

原创 阅读笔记-GRAPHAF:A FLOW-BASED AUTOREGRESSIVE MODEL FOR MOLECULAR GRAPH GENERATION

GRAPHAF:A FLOW-BASED AUTOREGRESSIVE MODEL FOR MOLECULAR GRAPH GENERATION文章链接

2020-09-28 00:03:43 904

原创 Efficient learning of nonautoregressive graph variational autoencoders for molecular graphgeneration

阅读笔记Graph Representation Learning–Chapter943/100发布文章tn520520系列文章目录阅读笔记Graph Representation Learning–Chapter2阅读笔记Graph Representation Learning–Chapter3阅读笔记Graph Representation Learning–Chapter4阅读笔记Graph Representation Learning–Chapter5阅读笔记Graph Rep

2020-09-27 19:34:09 243

原创 阅读笔记Graph Representation Learning--Chapter9

系列文章目录阅读笔记Graph Representation Learning–Chapter2阅读笔记Graph Representation Learning–Chapter3阅读笔记Graph Representation Learning–Chapter4阅读笔记Graph Representation Learning–Chapter5阅读笔记Graph Representation Learning–Chapter6阅读笔记Graph Representation Learning–

2020-09-24 00:00:36 337

原创 阅读笔记Graph Representation Learning--Chapter8

系列文章目录阅读笔记Graph Representation Learning–2.1阅读笔记Graph Representation Learning–2.2阅读笔记Graph Representation Learning–2.3阅读笔记Graph Representation Learning–Chapter 3阅读笔记Graph Representation Learning–Chapter4阅读笔记Graph Representation Learning–Chapter5阅读笔记G

2020-09-23 18:38:50 448

原创 阅读笔记Graph Representation Learning--Chapter6

系列文章目录阅读笔记Graph Representation Learning–2.1阅读笔记Graph Representation Learning–2.2阅读笔记Graph Representation Learning–2.3阅读笔记Graph Representation Learning–Chapter 3阅读笔记Graph Representation Learning–Chapter4阅读笔记Graph Representation Learning–Chapter5阅读笔记G

2020-09-22 12:44:47 417

原创 阅读笔记Graph Representation Learning--Chapter5

系列文章目录阅读笔记Graph Representation Learning–2.1阅读笔记Graph Representation Learning–2.2阅读笔记Graph Representation Learning–2.3阅读笔记Graph Representation Learning–Chapter 3阅读笔记Graph Representation Learning–Chapter4阅读笔记Graph Representation Learning–Chapter5Chapt

2020-09-21 19:34:00 858

原创 阅读笔记Graph Representation Learning--Chapter4

系列文章目录文章目录系列文章目录Multi-relational Data andKnowledge Graphs概要4.1 Reconstructing multi-relational data4.2 Loss functions4.3 Multi-relational decoders4.3.1 Representational abilitiesMulti-relational Data andKnowledge Graphs概要Knowledge graph completion:我们在本

2020-09-19 02:40:34 547

原创 阅读笔记Graph Representation Learning--Chapter3

系列文章目录文章目录系列文章目录Neighborhood Reconstruction Methods3.1 An Encoder-Decoder Perspective3.1.1 The Encoder3.1.2 The Decoder3.1.3&3.1.4 Optimizing an Encoder-Decoder Model & Overview of the Encoder-Decoder Approach3.2 Factorization-based approachesLap

2020-09-18 11:41:52 561

原创 阅读笔记Graph Representation Learning–Chapter2

系列文章目录阅读笔记Graph Representation Learning–2.1阅读笔记Graph Representation Learning–2.2阅读笔记Graph Representation Learning–2.3文章目录系列文章目录2.3 Graph Laplacians and Spectral Methods2.3.1 Graph LaplaciansUnnormalized LaplacianNormalized Laplaciansrandom walk Lapl

2020-09-17 15:21:58 1036 3

原创 阅读笔记--DeepWalk:Online Learning of Social Representations

文章目录前言一、方法1.在学习一个网络表示的时候需要注意的几个性质:2.Random Walks3.DeepWalk二、使用步骤1.引入库2.读入数据总结前言图网络表示学习:或图表示学习,也称为图嵌入学习,目的是希望能够将网络中的节点用比较低维的向量去表达,同时在这个向量空间中,网络结构的一些性质仍能保持。在原始图中相似(不同的方法对相似的定义不同)的节点其在低维空间也相近,得到的表征向量可以用来做节点分类,链接预测等下游任务。一、方法1.在学习一个网络表示的时候需要注意的几个性质:适应性:网络

2020-09-13 20:32:44 180

原创 阅读笔记--CAN GRAPH NEURAL NETWORKS GO “ONLINE”? AN ANALYSIS OF PRETRAINING AND INFERENCE

文章目录一、介绍概览Inductive learning 与 Transductive learning二、实验设置总结一、介绍概览研究动机:现实应用中,大规模的图数据往往是动态的而不是静态的。新的节点和边会随时出现。而当这种情况发生后,并不容易决定是重新训练模型还是在原有模型的基础上进行训练。作者将经过预训练的GNN和从头再训练的GNN进行了对比,对于新插入的节点和边,经过预训练的GNN性能强于在新插入的节点和边的图数据上进行重新训练的GNN。本文中,作者创建了一个专用实验来评估图神经网络的推理

2020-09-01 20:49:09 225

原创 阅读笔记-Pre-Training Graph Neural Networks for Generic Structural Feature Extraction

阅读笔记摘要预训练方法介绍1.Denoising Link Reconstruction2.Centrality Score Ranking图或网络中的中心性3.Cluster Preserving摘要(1)去噪连接重建(2)中心得分排名(3)集群保护预训练方法介绍模型框架如下图所示:1.Denoising Link Reconstruction作者认为一个好的特征提取器应该能够恢复链接,即使它们已经从给定的图中删除,由此提出了这项预训练任务。对于输入的图G,随即删除输入图G中的一些已经存

2020-08-30 09:17:00 687

原创 阅读笔记--GraphSAGE

目录一、简介二、GraphSAGE2.1 概览GraphSAGE:Graph Sample and aggreGatE三个步骤:2.2 Embedding的生成Forward propagation:Neighborhood definition2.3 Learning the parameters of GraphSAGE基于图的无监督损失基于图的有监督损失2.4 聚合函数的选择概览Mean aggregatorLSTM aggregatorPooling aggregator三、总结一、简介事实证明

2020-08-28 19:52:15 614

原创 阅读笔记-STRATEGIES FOR PRE-TRAINING GRAPH NEURAL NETWORKS

阅读笔记-STRATEGIES FOR PRE-TRAINING GRAPH NEURAL NETWORKS策略节点级预训练方法图级别的预训练概览策略节点级预训练方法;图级预训练方法节点级预训练方法CONTEXT PREDICTION(1)用子图来预测其周围的图结构;对于节点v的K-hop neighborhood的定义:以节点v为中心,距离v距离不超过K的节点。而上下文图的定义:设定两个超参数r1,r2,上下文图就是节点v r1 r2之间的子图,如上图所示。有一些节点同时存在于邻域图

2020-08-26 11:27:10 284

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除