soccqy
码龄11年
关注
提问 私信
  • 博客:35,603
    35,603
    总访问量
  • 25
    原创
  • 723,160
    排名
  • 27
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2014-05-03
博客简介:

tn520520的博客

查看详细资料
个人成就
  • 获得19次点赞
  • 内容获得10次评论
  • 获得108次收藏
创作历程
  • 2篇
    2021年
  • 23篇
    2020年
成就勋章
TA的专栏
  • GNN
    21篇
  • PreTrain
    3篇
  • ICLR2021
  • pytorch
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 人工智能
    opencvcaffetensorflowmxnetpytorchnlpscikit-learn聚类集成学习迁移学习分类回归
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Graph学习笔记

复杂的图2.1 异构图同构图只有一种节点类型,一种边的类型。异构图即边与节点的类型都不止一种的图。二分图:G={V,E}\mathcal G=\left\{\mathcal V,\mathcal E\right\}G={V,E},节点集V\mathcal VV可以被划分为两类V1\mathcal V_{1}V1​,V2\mathcal V_{2}V2​,图里的边只存在与这两个集的节点的相互连接。多维图:在许多现实世界的图形中,一对节点之间可以同时存在多个关系。比如电商网站里用户与商品之间的关系可以
原创
发布博客 2021.04.19 ·
1311 阅读 ·
0 点赞 ·
5 评论 ·
1 收藏

阅读笔记-蛋白质序列预训练ESM

阅读笔记-Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences概要数据与模型同源性建模概要         \,\,\,\,\,\,\,\,\,数十年来,公共数据库中蛋白质序列数量的增长呈指数趋势,从而深入了解了整个生命中蛋白质序列的广度和多样性。 该数据为使用人工智能研究生物学的预测和生成模型提供了有希望的基础。 本文的重点是使单个模型适合
原创
发布博客 2021.02.20 ·
11540 阅读 ·
6 点赞 ·
0 评论 ·
31 收藏

阅读笔记--Protein PreTrain

阅读笔记--Pre-training Protein Language Models withLabel-Agnostic Binding Pairs Enhances Performancein Downstream Tasks1、预备知识1.1 Longformer1.2 BPE介绍2、相关工作3、方法2.1 数据集下游任务单个的蛋白质序列分类成对蛋白质序列分类token级分类(序列标注)1、预备知识1.1 LongformerLongformer是一种可高效处理长文本的模型,传统Transfor
原创
发布博客 2020.12.19 ·
863 阅读 ·
0 点赞 ·
1 评论 ·
8 收藏

阅读笔记--TAPE--NIPS2019

阅读笔记蛋白质介绍蛋白质的基础问题蛋白质家族概要方法数据集蛋白质介绍蛋白质对于生物的运转必不可少,从运输氧气的血红蛋白到人眼中的感光蛋白,从运输离子的输运蛋白到肌肉中的肌肉蛋白,它们的存在为生命造就多姿多彩的发展。理解蛋白质的结构和损坏机理不仅能够让我们对疾病的分子学机理有着更好的了解,更能帮助我们找到更好的方式对抗疾病!蛋白质除了是维生的必要物质,更是生产各种抗体和疫苗的有效方式,同时还可以通过个性化改造让细菌具有分解废物的能力,生产出具有去污功效的酶。如果能够更深入地理解蛋白质,更多的新功能就可以被
原创
发布博客 2020.12.18 ·
1299 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

阅读笔记--ICML2020--A Generative Model for Molecular Distance Geometry

阅读笔记--ICML2020--A Generative Model for Molecular Distance Geometry
原创
发布博客 2020.12.05 ·
249 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

阅读笔记-Iterative Refinement in the Continuous Spacefor Non-Autoregressive Neural Machine Translation

阅读笔记-Iterative Refinement in the Continuous Spacefor Non-Autoregressive Neural Machine Translation1、1、
原创
发布博客 2020.10.30 ·
595 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

阅读笔记-分子图benchmark

阅读笔记-图benchmarkogbn-proteins: Protein-Protein Association Networkogbl-ddi: Drug-Drug Interaction Networkogbl-biokg: Biomedical Knowledge Graphogbn-proteins: Protein-Protein Association Networkogbn-proteins:无向,带权重,多种边类型的图结构。节点代表着蛋白质分子,边表示蛋白质之间不同类型的有生物学意义的
原创
发布博客 2020.10.22 ·
3081 阅读 ·
2 点赞 ·
0 评论 ·
11 收藏

EMNLP’19-Mask-Predict: Parallel Decoding of Conditional Masked Language Models

Mask-Predict: Parallel Decoding ofConditional Masked Language Models·
原创
发布博客 2020.10.12 ·
1203 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

阅读笔记--MolGAN: An implicit generative model for small molecular graphs

Deterministic policy gradients在药物生成中,我们生成的分子,不仅要满足化学定义,而且要有一些有用的性质(比如说易于合成)。而这种目标对于训练过程来说其实是不可微的,所以需要引入强化学习来优化那些不可微的指标的生成过程。生成器作者发现预先选择最大尺寸的图,可以以更快的速度训练,并且也更容易优化。...
原创
发布博客 2020.10.05 ·
3791 阅读 ·
3 点赞 ·
1 评论 ·
17 收藏

阅读笔记-KDD2020-MoFlow: An Invertible Flow Model for Generating Molecular Graphs

阅读笔记-MoFlow: An Invertible Flow Model for Generating Molecular Graphs
原创
发布博客 2020.09.30 ·
1813 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

阅读笔记-A Graph to Graphs Framework for Retrosynthesis Prediction

A Graph to Graphs Framework for Retrosynthesis Prediction
原创
发布博客 2020.09.29 ·
839 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

阅读笔记-GRAPHAF:A FLOW-BASED AUTOREGRESSIVE MODEL FOR MOLECULAR GRAPH GENERATION

GRAPHAF:A FLOW-BASED AUTOREGRESSIVE MODEL FOR MOLECULAR GRAPH GENERATION文章链接
原创
发布博客 2020.09.28 ·
918 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

Efficient learning of nonautoregressive graph variational autoencoders for molecular graphgeneration

阅读笔记Graph Representation Learning–Chapter943/100发布文章tn520520系列文章目录阅读笔记Graph Representation Learning–Chapter2阅读笔记Graph Representation Learning–Chapter3阅读笔记Graph Representation Learning–Chapter4阅读笔记Graph Representation Learning–Chapter5阅读笔记Graph Rep
原创
发布博客 2020.09.27 ·
252 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

阅读笔记Graph Representation Learning--Chapter9

系列文章目录阅读笔记Graph Representation Learning–Chapter2阅读笔记Graph Representation Learning–Chapter3阅读笔记Graph Representation Learning–Chapter4阅读笔记Graph Representation Learning–Chapter5阅读笔记Graph Representation Learning–Chapter6阅读笔记Graph Representation Learning–
原创
发布博客 2020.09.24 ·
341 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

阅读笔记Graph Representation Learning--Chapter8

系列文章目录阅读笔记Graph Representation Learning–2.1阅读笔记Graph Representation Learning–2.2阅读笔记Graph Representation Learning–2.3阅读笔记Graph Representation Learning–Chapter 3阅读笔记Graph Representation Learning–Chapter4阅读笔记Graph Representation Learning–Chapter5阅读笔记G
原创
发布博客 2020.09.23 ·
459 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

阅读笔记Graph Representation Learning--Chapter6

系列文章目录阅读笔记Graph Representation Learning–2.1阅读笔记Graph Representation Learning–2.2阅读笔记Graph Representation Learning–2.3阅读笔记Graph Representation Learning–Chapter 3阅读笔记Graph Representation Learning–Chapter4阅读笔记Graph Representation Learning–Chapter5阅读笔记G
原创
发布博客 2020.09.22 ·
420 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

阅读笔记Graph Representation Learning--Chapter5

系列文章目录阅读笔记Graph Representation Learning–2.1阅读笔记Graph Representation Learning–2.2阅读笔记Graph Representation Learning–2.3阅读笔记Graph Representation Learning–Chapter 3阅读笔记Graph Representation Learning–Chapter4阅读笔记Graph Representation Learning–Chapter5Chapt
原创
发布博客 2020.09.21 ·
874 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

阅读笔记Graph Representation Learning--Chapter4

系列文章目录文章目录系列文章目录Multi-relational Data andKnowledge Graphs概要4.1 Reconstructing multi-relational data4.2 Loss functions4.3 Multi-relational decoders4.3.1 Representational abilitiesMulti-relational Data andKnowledge Graphs概要Knowledge graph completion:我们在本
原创
发布博客 2020.09.19 ·
553 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

阅读笔记Graph Representation Learning--Chapter3

系列文章目录文章目录系列文章目录Neighborhood Reconstruction Methods3.1 An Encoder-Decoder Perspective3.1.1 The Encoder3.1.2 The Decoder3.1.3&3.1.4 Optimizing an Encoder-Decoder Model & Overview of the Encoder-Decoder Approach3.2 Factorization-based approachesLap
原创
发布博客 2020.09.18 ·
569 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

阅读笔记Graph Representation Learning–Chapter2

系列文章目录阅读笔记Graph Representation Learning–2.1阅读笔记Graph Representation Learning–2.2阅读笔记Graph Representation Learning–2.3文章目录系列文章目录2.3 Graph Laplacians and Spectral Methods2.3.1 Graph LaplaciansUnnormalized LaplacianNormalized Laplaciansrandom walk Lapl
原创
发布博客 2020.09.17 ·
1053 阅读 ·
0 点赞 ·
3 评论 ·
5 收藏
加载更多