关于公差为1的等差数列的另外求法(作者自己想法,如有雷同,纯属巧合)

博客介绍了求解公差为1的等差数列前n项和的一种新方法,通过将1+n视为一组,简化计算过程。当n为偶数时,分为⌊(n + 1) / 2⌋组,每组大小为1+n;当n为奇数时,额外加上n。最终公式为:⌊(n + 1) / 2⌋ * (1 + ⌊n / 2⌋ * 2)。此外,还探讨了序列的另一种展开规律,并得出新规律:[⌊(n - 1) / 2⌋ + 1] * [⌊n / 2⌋ * 2 + 1].

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                        

        一个等差数列为1+2+3+···+n,如果!(n%2)(即n为偶数),那么即可把1+n看作1组,如果为奇数个,那么n下一个数就是1+n,也能看作一组,如下所示:

                    1   =  1 * 1  =  1 * (1 + 0) = 1
                    3   =  1 * 3  =  1 * (1 + 2) = 1 + 2
                    6   =  2 * 3  =  2 * (1 + 2) = 1 + 2 + 3
                    10  =  2 * 5  =  2 * (1 + 4) = 1 + 2 + 3 + 4
                    15  =  3 * 5  =  3 * (1 + 4) = 1 + 2 + 3 + 4 + 5
                    21  =  3 * 7  =  3 * (1 + 6) = 1 + 2 + 3 + 4 + 5 + 6
                    28  =  4 * 7  =  4 * (1 + 6) = 1 + 2 + 3 + 4 + 5 + 6 + 7
                    36  =  4 * 9  =  4 * (1 + 8) = 1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值