POJ 1113

  http://poj.org/problem?id=1113

求离多边形的距离至少为L的多边形的最小周长

先求凸包

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<algorithm>
#define eps 1e-8
#define PI 3.1415926
#define M 2005
using namespace std;

struct point
{
	int x;
	int y;
}po[M],stack[M];

bool cmp(point a,point b)
{
	if(a.y==b.y)
		return a.x<b.x;
	return a.y<b.y;
}

double Getlen(point a,point b)
{
	return sqrt((a.x-b.x)*(a.x-b.x)
	+(a.y-b.y)*(a.y-b.y));
}

bool mult(point sp,point ep,point op)
{
	return (sp.x-op.x)*(ep.y-op.y)>=
	(ep.x-op.x)*(sp.y-op.y);
}

int Graham(point pnt[],int n,point res[])
{
	int i,len,k=0,top=1;
	sort(pnt,pnt+n,cmp);
	if(n==0) return 0;
	res[0]=pnt[0];
	if(n==1) return 1;
	res[1]=pnt[1];
	if(n==2) return 2;
	res[2]=pnt[2];
	for(i=2;i<n;i++)
	{
		while(top && mult(pnt[i],res[top],res[top-1]))
			top--;
		res[++top]=pnt[i];
	}
	len=top;
	res[++top]=pnt[n-2];
	for(i=n-3;i>=0;i--)
	{
		while(top!=len && mult(pnt[i],res[top],res[top-1]))
			top--;
		res[++top]=pnt[i];
	}
	return top;
}

int main()
{
	int i,j;
	int top;
	int n,L;
	double sum;
	__int64 sum1;
	while(scanf("%d%d",&n,&L)!=EOF)
	{ 
		for(i=0;i<n;i++)
			scanf("%d%d",&po[i].x,&po[i].y);
		top=Graham(po,n,stack);
		sum=0;
		sum=sum+Getlen(stack[0],stack[top-1])*1.0;
		for(i=1;i<top;i++)
		{
			sum=sum+Getlen(stack[i],stack[i-1]);
		}
		sum=sum+2*PI*L;
		sum1=(__int64)sum;
		if((sum-sum1*1.0)>=0.5+eps)
			sum1+=1;
		printf("%I64d\n",sum1);
	}
	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值