POJ 1151

 http://poj.org/problem?id=1151

题意是 给你n个矩形的坐标 求矩形覆盖的总面积

离散化

 

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#define M 300
#define eps 1e-6
using namespace std;

struct trangle
{
	double x1,y1,x2,y2;
}trg[105];

int n,xi,yi;
double xx[M],yy[M];
double ss[M][M];
double tot_s;
bool Had_add[M][M];

int findxi(double x)
{
	int l=0,r=xi-1,mid,ans;
	while(l<=r)
	{
		mid=(l+r)/2;//printf("%d %d %lf\n",l,r,xx[mid]);
		if(fabs(xx[mid]-x)<eps) break;
		else if(xx[mid]-x<0)
			l=mid+1;
		else
			r=mid-1;
	}//printf("---%d\n",mid);
	return mid;
}

int findyi(double y)
{
	int l=0,r=yi-1,mid,ans;
	while(l<=r)
	{
		mid=(l+r)/2;//printf("%d %d %lf\n",l,r,xx[mid]);
		if(fabs(yy[mid]-y)<eps) break;
		else if(yy[mid]-y<-eps)
			l=mid+1;
		else if(yy[mid]-y>eps)
			r=mid-1;
	}//printf("---%d\n",mid);
	return mid;
}

void solve()
{
	int i,j,k;
	int x,y;
	double x1,x2,y1,y2;
	sort(xx,xx+xi);
	sort(yy,yy+yi);
	//for(i=1;i<xi;i++)
		//for(j=1;j<yi;j++)
			//ss[i][j]=(xx[i]-xx[i-1])*(yy[j]-yy[j-1])*1.0;
	memset(Had_add,false,sizeof(Had_add));
	tot_s=0;
	for(k=1;k<=n;k++)
	{
		x1=trg[k].x1; y1=trg[k].y1;
		x2=trg[k].x2; y2=trg[k].y2;
		x=findxi(x1);
		y=findyi(y1);
		//printf("--%d %d\n",x,y);
		for(i=x+1;xx[i]-x2<=eps&&i<xi;i++)
		{
			for(j=y+1;yy[j]-y2<=eps&&j<yi;j++)
			{
				if(!Had_add[i][j])
				{
					//printf("%d %d\n",i,j);
					//tot_s+=ss[i][j];
					//printf("ss[%d][%d]=%f %f\n",i,j,ss[i][j],(xx[i]-xx[i-1])*(yy[j]-yy[j-1]));
					tot_s=tot_s+(xx[i]-xx[i-1])*(yy[j]-yy[j-1]);
					Had_add[i][j]=true;
				}
			}
		}
	}
}

int main()
{
	double a,b,c,d,t;
	int i,cas=1;
	while(scanf("%d",&n)&&n)
	{
		xi=yi=0;
		for(i=1;i<=n;i++)
		{
			scanf("%lf%lf%lf%lf",&a,&b,&c,&d);
			if(a-c>eps)
			{
				t=a; a=c; c=t;
				t=b; b=d; d=t;
			}
			trg[i].x1=a; trg[i].y1=b;
			trg[i].x2=c; trg[i].y2=d;
			xx[xi++]=a; xx[xi++]=c;
			yy[yi++]=b; yy[yi++]=d;
		}
		solve();
		printf("Test case #%d\nTotal explored area: %.2f\n\n",cas++,tot_s);
	}
	return 0;
} 


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值