Caption-Anything项目Ubuntu22.04系统复现

本文介绍了南方科技大学开发的Caption-Anything项目,集成了图像分割和文本生成功能,能为图像中的对象生成描述性文本。文章详细指导了环境搭建、依赖安装和项目运行,包括使用不同模型对显存的需求和解决常见问题的方法。
摘要由CSDN通过智能技术生成

一、项目介绍

1.Github地址:

https://github.com/ttengwang/Caption-Anythingicon-default.png?t=N7T8https://github.com/ttengwang/Caption-Anything2.论文地址:

https://arxiv.org/abs/2305.02677icon-default.png?t=N7T8https://arxiv.org/abs/2305.026773.项目简介:

        Caption-Anything 是由南方科技大学团队推出的一款多模态的图像处理工具,它结合了今年主流的 Segment-AnythingChatGPT 生成字幕解释的功能,分别对应图像分割(通过鼠标点击,生成点、框、轨迹)和文本生成(生成有长度、有情感、事实性的文本)。 Caption-Anything 的具体功能是为输入图像中的任何对象(object)生成描述性的文本标题,它还提供了一系列语言类型以适应不同国家的用户偏好。总的来说,它将视觉和语言提示统一到一个模块化的框架中,从而实现不同控件之间的灵活组合。

  • 用于文本生成的可视控件和语言控件
  • 选择所选对象,详细了解
  • 交互式演示

二、项目实现

1.环境搭建:

# 克隆项目目录(如果git clone出错,简单的方法直接下载zip,或者看下面问题解决):

git clone https://github.com/ttengwang/caption-anything.git

cd caption-anything

# 安装项目依赖(python版本需>=3.8.1,其中有坑不推荐一键安装,具体看下面问题解决):
conda create -n cat python==3.10

conda activate cat

pip install -r requirements.txt(具体下载速度快慢我就不阐述了,以前发过)

# 配置OpenAI的ChatGPT4的api key(GPT3.5的key无法使用,至少我无法使用,后面在网页打开时配置)

# 运行Caption-Anything的gradio demo:

python app_langchain.py --segmenter huge --captioner blip2 --port 6086  --clip_filter  
# 需要13G以上的GPU显存,基本3090、3090Ti、4080、4090才可以

#python app_langchain.py --segmenter base --captioner blip2 
# 需要9G的显存,3080、3080Ti、3090、3090Ti、
4060Ti12GB、4070、4070Ti、4080、4090可以

#python app_langchain.py --segmenter base --captioner blip 
# 需要6G的显存,非生产力平民可以试试跑这个demo

# (可选推荐) 使用SAM的预训练模型:

wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth ./sam_vit_h_4b8939.pth # 保持网络代理畅通

python app_langchain.py --segmenter huge --captioner blip2 --segmenter_checkpoint ./sam_vit_h_4b8939.pth  # 需要13G左右的显存

2.问题解决:

  • git clone问题:

        使用 git clone 拉取 Github 项目仓库时,我遇到了 "Recv failure: Connection was reset" 和 "Failed to connect to http://github.com port 443 after 23456 ms: Couldn't connect to server" 的报错。此时,需要为 git 单独配置代理,根据你的代理端口号(默认为7890,127.0.0.1代表本机)使用如下命令:

git config --global http.proxy http://127.0.0.1:7890
git config --global https.proxy http://127.0.0.1:7890

        这样就完成了配置,可以 git clone 一下试试:

git clone https://github.com/ttengwang/caption-anything.git

        如果仍然报错,并且错误为SSLError,可以用以下命令设置关闭 SSL 证书验证即可:

git config --global http.sslVerify false
  • 安装依赖的问题:
  1. gradio版本必须要指定作者requirments里的版本,我安装的是最新版本一些控件功能被删除而导致出错:
    pip install https://gradio-builds.s3.amazonaws.com/3e68e5e882a6790ac5b457bd33f4edf9b695af90/gradio-3.24.1-py3-none-any.whl
  2. langchain版本也必须按照requirments里的版本安装
  3. pillow的版本连带安装的版本太新,需要降级,否则之后运行项目会出现AttributeError: 'FreeTypeFont' object has no attribute 'getsize'的bug
    pip install pillow==9.5
  4. torch的版本最新的版本亲测可用,没必要像requirements里的那么旧的版本
  5. 其他requirements里的包需要指定版本,默认就好
  • requirements.txt修改后如下:
torch
torchvision
torchaudio
openai
pillow==9.5
langchain==0.0.101
git+https://github.com/huggingface/transformers.git
ftfy
regex
tqdm
git+https://github.com/openai/CLIP.git
git+https://github.com/facebookresearch/segment-anything.git
opencv-python
pycocotools
matplotlib
onnxruntime
onnx
https://gradio-builds.s3.amazonaws.com/3e68e5e882a6790ac5b457bd33f4edf9b695af90/gradio-3.24.1-py3-none-any.whl
accelerate
bitsandbytes
easyocr
tensorboardX

3.项目运行:

  • 我运行的是SAM的预训练模型sam_vit_h_4b8939.pth:
python app_langchain.py --segmenter huge --captioner blip2 --segmenter_checkpoint ./sam_vit_h_4b8939.pth

此时又遇到了一个头疼的bug,运行这个脚本初始化会连接huggingface.co网站下载相关模型以及配置文件,尽管代理开了,但是始终连接不上网站,出现类似如下错误:

Connection error, and we cannot find the requested files in the disk cache. Please try again or make sure your Internet connection is on.

ConnectionResetError: [Errno 104] Connection reset by peer.

查询网上大部分的回答都没用,终极解决方法:

在项目的app_langchain.py开头添加如下代码才可正确配置代理下载在系统缓存的目录模型:

import os
os.environ['TRANSFORMERS_CACHE'] = '~/.cache/huggingface/hub'

proxy = "http://127.0.0.1:7890"

os.environ['http_proxy'] = proxy
os.environ['HTTP_PROXY'] = proxy
os.environ['https_proxy'] = proxy
os.environ['HTTPS_PROXY'] = proxy

添加位置如下:

至此,再运行脚本,根据代理下载了一些模型文件和配置文件之后就可以启动网站端口了:

注意,0.0.0.0:6086的意思是所有局域网内的人都可访问你的服务器,只需要输入你的ip加端口就行。

打开页面如下:

有api key的可以尝试一下,笔者没有只能选择第二个按钮进去体验。

这里可以上传图像,通过点击鼠标进行识别分割以及文本生成阐述:

  • 默认鼠标点击方式是continuous,点击一下就可识别扩充出物体的边缘,也可以选择single的方式,多点击几下确保你想要的物体在一个框里。

  • positive表示点哪里就哪里,negative相反,点哪里,哪里识别的块就不参与文本解释。

三、完结撒花!!!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YIBO0408

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值