- 博客(141)
- 资源 (2)
- 收藏
- 关注
原创 【MRI基础】Zero-filling 重建伪影
MRI 图像重建中的零填充伪影是指当采集的数据采样不足或使用插值技术在图像重建过程中填充缺失的数据点时可能出现的伪影。
2024-09-11 16:44:33 500
原创 【MRI基础】TI反转时间概念
在磁共振成像 (MRI) 中,反转时间 (TI) 是反转恢复脉冲序列中的一个特定参数。它表示施加 180 度反转脉冲(将纵向磁化翻转到相反方向)与随后的 90 度激励脉冲(将磁化翻转到横向平面以创建 MR 信号)之间的时间间隔。
2024-09-08 01:49:33 1368
原创 【医学图像】医学图像基础
医学图像,作为诊断和治疗的基本手段,在最近几十年中不断发展。目前成熟的医学成像技术,包括X射线,CT成像,磁共振MRI成像,PET正电子发射成像,核医学成像,超声成像等等。
2024-08-05 20:56:04 843
原创 【MRI重建】基于L+S方法的加速动态成像(MATLAB)
多线圈 L+S MRI图像重建是使用凸优化方法制定的,其中核范数用于强制 L 中的低秩,而 l1 范数用于强制 S 中的稀疏性。
2024-04-29 03:08:09 282
原创 【MRI重建】基于径向采样的GRASP重建实现(matlab)
对比增强MRI和弥散MRI成像,对于时间分辨率要求都比较高,为了捕获高时间空间分辨率,这里使用GRASP方法,重建radial径向采样的MR数据。
2024-04-27 02:19:53 257
原创 【MRI重建】Cartesian采样中data consistency 常规数据一致性实现(pytorch)
在MRI重建中,data consistency 可以帮助加快MRI图像重建和减少模型重建带来的重建误差。
2024-04-27 00:40:12 359 2
原创 【MRI重建】基于radial径向采样的实时介入式多通道磁共振重建
准确的导航和定位对于包括活检和深部脑刺激在内的神经干预至关重要。实时图像引导进一步改善了手术计划,MRI 非常适合术前和术中成像。然而,平衡空间和时间分辨率是实时介入 MRI (i-MRI) 的主要挑战。在这里,提出一种深度展开神经网络,用于实时 i-MRI 重建。通过将重建模型 和定制设计的、与 MR 兼容的介入设备集成到 3 T MRI 扫描仪中,提出了一种实时 MRI 引导的大脑干预系统。Biopsy needle susceptibility artifacts - PubMedInterventi
2024-04-26 23:40:52 255
原创 【信号处理】基于CNN的心电(ECG)信号分类典型方法实现(tensorflow)
本实验使用1维卷积神经网络实现心电信号的5分类。由于数据类别不均衡,这里使用典型的上采样方法,实现数据类别的均衡化处理。
2024-04-21 17:34:03 1042 5
原创 【信号处理】基于CNN自编码器的心电信号异常检测识别(tensorflow)
本项目主要实现卷积自编码器对于异常心电ECG信号的检测和识别,属于无监督学习中的生理信号检测的典型方法之一。
2024-04-21 15:35:06 770
原创 【信号处理】基于EEG脑电信号的自闭症预测典型方法实现
本项目主要实现基于脑电信号的自闭者的早期检测(正常vs非正常),为早期筛查和干预提供及时的预警。
2024-04-21 04:51:35 348 1
原创 【信号处理】心电信号传统R波检测定位典型方法实现(matlab)
心电信号中QRS波检测是一个非常重要的步骤,可以用于实现重要波群的基本定位,在定位基础上,可以进一步分析心电信号的特征变化,从而为医疗诊断提供必要的参考。
2024-04-15 01:43:41 519 2
原创 【域适应】深度域适应常用的距离度量函数实现
深度域适应中,有一类方法是实现目标域和源域的特征对齐,特征对齐的衡量函数主要包括MMD,MK-MMD,A-distance,CORAL loss, Wasserstein distance等等。本文总结了常用的特征变换对齐的函数定义。
2024-04-11 21:58:00 1063
原创 【域适应】基于散度成分分析(SCA)的四分类任务典型方法实现
SCA(scatter component analysis)是基于一种简单的几何测量,即分散,它在再现内核希尔伯特空间上进行操作。SCA找到一种在最大化类的可分离性、最小化域之间的不匹配和最大化数据的可分离性之间进行权衡的表示;每一个都通过分散进行量化。
2024-04-11 18:25:26 359
原创 【域适应】基于深度域适应MMD损失的典型四分类任务实现
MMD (maximum mean discrepancy)是用来衡量两组数据分布之间相似度的度量。一般地,如果两组数据分布相似,那么MMD 损失就相对较小,说明两组数据/特征处于相似的特征空间中。基于这个想法,对于源域和目标域数据,在使用深度学习进行特征提取中,使用MMD损失,可以让模型提取两个域的共有特征/空间,从而实现源域到目标域的迁移。
2024-04-11 15:26:28 938
原创 【域适应】基于迁移成分分析(TCA) 的典型二分类问题(python)
传统预适应方法 transfer component analysis 典型方法实现。
2024-04-11 15:04:25 436
原创 【信号处理】基于变分自编码器(VAE)的脑电信号增强典型方法实现(tensorflow)
在脑电信号分析处理任务中,数据不均衡是一个常见的问题。针对数据不均衡,传统方法有过采样和欠采样方法来应对,但是效果有限。本项目通过变分自编码器对脑电信号进行生成增强,提高增强样本的多样性,从而提高最终的后端分析性能。
2024-04-03 16:01:49 1357 2
原创 【信号处理】基于变分自编码器(VAE)的图片典型增强方法实现
深度学习中,经常面临图片数据量较小的问题,此时,对数据进行增强,显得比较重要。传统的图片增强方法包括剪切,增加噪声,改变对比度等等方法,但是,对于后端任务的性能提升有限。所以,变分自编码器被用来实现深度数据增强。变分自编码器的主要缺点在于生成图像过于平滑和模糊,图像细节重建不足。
2024-04-03 14:32:38 828
原创 【信号处理】基于DGGAN的单通道脑电信号增强和情绪检测(tensorflow)
情绪检测,是脑科学研究中的一个常见和热门的方向。在进行情绪检测的分类中,真实数据不足,经常导致情绪检测模型的性能不佳。因此,对数据进行增强,成为了一个提升下游任务的重要的手段。
2024-03-28 05:15:26 541
原创 信号处理--情绪分类数据集DEAP预处理(python版)
DEAP数据集是一个常用的情绪分类公共数据,在日常研究中经常被使用到。如何合理地预处理DEAP数据集,对于后端任务的成功与否,非常重要。本文主要介绍DEAP数据集的预处理流程。
2024-03-27 00:42:03 2028 12
原创 信号处理--基于DEAP数据集的情绪分类的典型深度学习模型构建
本实验采用DEAP情绪数据集进行数据分类任务。使用了三种典型的深度学习网络:2D 卷积神经网络;1D卷积神经网络+GRU; LSTM网络。
2024-03-27 00:09:09 780 3
原创 信号处理--基于混合CNN和transfomer自注意力的多通道脑电信号的情绪分类的简单应用
本实验为电生理信号专题实验项目。本实验采用卷积神经网络和transfomer相结合的方法,实现了多通道脑电信号的情绪分类任务。情绪共分为三种类别:消极,中性,积极。相比于一般的卷积神经网络和传统机器学习模型,这种混合的模型在分类性能上更有优势。
2024-03-26 22:44:13 1011
原创 信号处理--使用EEGNet进行BCI脑电信号的分类
EEGNet作为一个比较成熟的框架,在BCI众多任务中,表现出不俗的性能。EEGNet 的主要特点包括:1)框架相对比较简单紧凑 2)适合许多的BCI脑电分析任务 3)使用两种卷积 Depth-wise convolution 和 separable convolution 实现普适特征的提取。
2024-03-24 17:05:13 1896 1
原创 信号处理--基于FBCSP滤波方法的运动想象分类
本项目为生物医学课设综合小实验,基于FBCSP滤波方法的运动想象分类。主要介绍了FBCSP算法的主要流程步骤,另外还展示了使用不同的CSP方法变体和特征筛选方法对于最后分类性能的影响。
2024-03-24 04:12:07 1218
磁共振重建GRAPPA方法手把手教程(matlab版本)
2024-09-09
信号处理-基于DEAP数据集的情绪分类的典型深度学习模型构建(tensorflow版本)
2024-03-27
信号处理-基于transfomer自注意力的多通道脑电信号的情绪分类的简单应用; 完整数据和pytorch代码实现;
2024-03-26
基于聚合法的正则化共模态空间CSP matlab 代码; 脑电信号处理
2024-03-18
自定义 confusion matrix计算和绘制 matlab
2023-04-03
数值优化之基于谱分解的均匀线阵旁瓣电平最小化问题求解(附matlab源代码和可视化)
2022-09-07
数值优化之任意二维阵列的最小波束宽度问题求解(附matlab源代码求解和可视化)
2022-09-07
最小二乘法简单求解(附matlab源代码和过程可视化,容易理解)
2022-09-07
不等式约束下的线性规划简单求解(附matlab原代码和过程可视化,方便求解和理解)
2022-09-07
数值优化之等式约束下的范数最小问题求解(附matlab原始求解代码和可视化,容易理解和剖析)
2022-09-07
数值优化之非负矩阵分解应用(附可运行matlab代码和较好的可视化)
2022-09-07
数值优化应用之最小相位谱分解(附matlab详细代码和讲解,清晰易懂,适合初学者)
2022-09-07
机器学习 支持向量机分类器使用
2022-08-30
机器学习 naive 贝叶斯分类器实现 (附原始matlab代码和数据集)
2022-08-30
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人