常用的电生理肌电信号数据合集 (EMG)

本文介绍了四个重要的IT技术相关数据库:Ninapro用于机器学习研究,包含多种生理数据;CapgMyo-DBa提供高清肌电信号数据;CSL-HDEMG专注于手指手势识别;EMGLAB则包含了正常、肌病和ALS患者的神经肌肉数据。SleepHeartHealthStudy关注睡眠与心血管健康的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

Ninapro

CapgMyo-DBa

CSL-HDEMG

EMGLAB

Sleep Heart Health Study


Ninapro

Ninapro 是一个公开的多模式数据库,旨在促进人类、机器人和假肢手的机器学习研究。
10 个 Ninapro 数据集总共包括来自完整受试者和经桡动脉截肢者的 180 多个数据采集(包括肌电图、运动学、惯性、临床、神经认知和眼手协调数据)。

CapgMyo-DBa

CapgMyo 数据库包括使用采集设备从 23 个完整受试者采集的 128 个通道的 HD-sEMG 数据。采集装置具有矩阵式(8×16)差分电极阵列,带有银湿电极。 CapgMyo数据库由3个子数据库组成(DB-a、DB-b和DB-c); DB-a 中 23 名受试者中的 18 名获得了 8 个等距和等张手势。

CSL-HDEMG

CSL-HDEMG 数据库包含从 5 名受试者获得的 27 个手指手势。 27个手指手势涵盖了单个手指的伸展和弯曲,并包含了一些可能在人机交互中使用的典型手势。在[12]中将它们分为三组,分别是轻击手势、弯曲手势和多指手势。信号由 7 × 24 电极网格双极性记录,通过从一列中最后一个电极与下一列中第一个电极的差异中删除数据通道,总共产生 168 个可用数据通道。 CSL-HDEMG 中的 HD-sEMG 信号以 2048 Hz 采样,每次试验记录三秒。每个受试者被要求在三秒的时间间隔内做出一个手势。每个受试者记录 5 个会话,并在每个会话中对每个手势进行 10 次尝试

EMGLAB

该材料由正常对照组、肌病患者组和 ALS 患者组组成。对照组由10名年龄21-37岁的正常受试者组成,其中女4例,男6例。十人中有六人的身体状况非常好,其余的除了一名以外,身体状况一般。对照组中没有人有神经肌肉疾病的体征或病史。肌病组有7名患者; 2女5男,年龄19-63岁。所有 7 人都有肌病的临床和电生理症状15。 ALS组由8名患者组成; 4女4男,年龄35-67岁。除了与 ALS 相符的临床和电生理症状外,其中 5 人在发病后几年内死亡,支持 ALS 的诊断。

Sleep Heart Health Study

睡眠心脏健康研究 (SHHS) 是一项由国家心肺和血液研究所实施的多中心队列研究,旨在确定睡眠呼吸障碍对心血管和其他后果的影响。它测试与睡眠相关的呼吸是否与冠心病、中风、全因死亡率和高血压的风险增加有关。1995 年 11 月 1 日至 1998 年 1 月 31 日期间,总共有 6,441 名 40 岁及以上的男性和女性参加了 SHHS 访问 1。在考试周期 3(2001 年 1 月至 2003 年 6 月)期间,进行了第二次多导睡眠图(SHHS 访问) 2) 是在 3,295 名参与者中获得的。CVD 结果数据由基线至 2011 年期间的家长队列进行监测和裁定。

### EMG信号去噪的技术实现 EMG信号中通常会受到多种噪声的影响,例如电噪声、运动伪影以及环境噪声等[^1]。这些干扰因素会对后续的信号分析造成影响,因此需要采用合适的去噪方法来提高信号的质量。 #### 小波变换(DWT)在EMG信号去噪中的应用 小波变换是一种高效的时频分析工具,在EMG信号去噪领域得到了广泛应用。其基本原理是对原始信号进行多尺度分解,将信号划分为不同的频率子带。随后通过对各子带的小波系数施加阈值处理,保留反映有效信号的大系数并剔除代表噪声的小系数,最终通过逆小波变换重构得到干净的信号[^2]。 以下是基于MATLAB实现的小波变换去噪代码示例: ```matlab % 加载含有噪声的EMG信号 load noisy_emg_signal.mat; % 假设文件名为noisy_emg_signal.mat % 设置小波基函数和分解层数 wavelet_name = 'db4'; % 使用Daubechies 4作为小波基 level = 5; % 分解层次设定为5层 % 执行小波分解 [c, l] = wavedec(noisy_emg_signal, level, wavelet_name); % 阈值去噪 (使用默认软阈值法) thr = wthrmngr('dw1d', c, l, 'penalhi'); c_denoised = wthresh(c, 's', thr); % 进行信号重构 denoised_emg_signal = waverec(c_denoised, l, wavelet_name); ``` 上述代码实现了对含噪EMG信号的小波变换去噪过程。其中`wavedec`用于执行正向小波分解,`waverec`则完成反向重构操作。此外,还可以调整参数如小波基的选择或者阈值计算方式以优化效果[^3]。 #### 其他可能适用的去噪技术 除了小波变换外,还有其他一些常见的EMG信号去噪手段可供考虑: - **经验模态分解(EMD)**:这是一种自适应的数据驱动型方法,特别适合于非平稳信号的处理。 - **独立成分分析(ICA)**:当目标是从混合信号中分离特定源信号时非常有用。 - **卡尔曼滤波器(Kalman Filter)**:适用于动态系统的状态估计问题,在某些情况下也可以用来减少随机误差。 每种方法都有各自的优势与局限性,实际选择需依据具体应用场景及需求综合判断。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医学信号图像玩家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值