描述
直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。本题要求是背包恰好装满背包时,求出最大价值总和是多少。如果不能恰好装满背包,输出NO
-
输入
-
第一行: N 表示有多少组测试数据(N<7)。
接下来每组测试数据的第一行有两个整数M,V。 M表示物品种类的数目,V表示背包的总容量。(0<M<=2000,0<V<=50000)
接下来的M行每行有两个整数c,w分别表示每种物品的重量和价值(0<c<100000,0<w<100000)
输出
- 对应每组测试数据输出结果(如果能恰好装满背包,输出装满背包时背包内物品的最大价值总和。 如果不能恰好装满背包,输出NO) 样例输入
-
2 1 5 2 2 2 5 2 2 5 1
样例输出
-
NO 1
-
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; int dp[50050]; struct fin { int c,w; }p[2005]; int main() { int t,n,v,i,j; scanf("%d",&t); while(t--) { scanf("%d %d",&n,&v); for(i=1;i<=n;i++) scanf("%d %d",&p[i].c,&p[i].w); memset(dp,-10000,sizeof(dp)); dp[0]=0; for(i=1;i<=n;i++){ for(j=p[i].c;j<=v;j++){ dp[j]=max(dp[j],dp[j-p[i].c]+p[i].w); } } if(dp[v]<0) printf("NO\n"); else printf("%d\n",dp[v]); } return 0; }