接口自动化测试框架(pytest+allure+aiohttp+ 用例自动生成)

近期准备优先做接口测试的覆盖,为此需要开发一个测试框架,经过思考,这次依然想做点儿不一样的东西。

  • 接口测试是比较讲究效率的,测试人员会希望很快能得到结果反馈,然而接口的数量一般都很多,而且会越来越多,所以提高执行效率很有必要
  • 接口测试的用例其实也可以用来兼做简单的压力测试,而压力测试需要并发
  • 接口测试的用例有很多重复的东西,测试人员应该只需要关注接口测试的设计,这些重复劳动最好自动化来做pytest和allure太好用了,新框架要集成它们
  • 接口测试的用例应该尽量简洁,最好用yaml,这样数据能直接映射为请求数据,写起用例来跟做填空题一样,便于向没有自动化经验的成员推广 加上我对Python的协程很感兴趣,也学了一段时间,一直希望学以致用,所以http请求我决定用aiohttp来实现。 但是pytest是不支持事件循环的,如果想把它们结合还需要一番功夫。于是继续思考,思考的结果是其实我可以把整个事情分为两部分。 第一部分,读取yaml测试用例,http请求测试接口,收集测试数据。 第二部分,根据测试数据,动态生成pytest认可的测试用例,然后执行,生成测试报告。 这样一来,两者就能完美结合了,也完美符合我所做的设想。想法既定,接着 就是实现了。

第一部分(整个过程都要求是异步非阻塞的)

读取yaml测试用例

一份简单的用例模板我是这样设计的,这样的好处是,参数名和aiohttp.ClientSession().request(method,url,**kwargs)是直接对应上的,我可以不费力气的直接传给请求方法,避免各种转换,简洁优雅,表达力又强。

  1. args:

  2. - post

  3. - /xxx/add

  4. kwargs:

  5. -

  6. caseName: 新增xxx

  7. data:

  8. name: ${gen_uid(10)}

  9. validator:

  10. -

  11. json:

  12. successed: True

异步读取文件可以使用aiofiles这个第三方库,yaml_load是一个协程,可以保证主进程读取yaml测试用例时不被阻塞,通过await yaml_load()便能获取测试用例的数据

  1. async def yaml_load(dir='', file=''):

  2. """

  3. 异步读取yaml文件,并转义其中的特殊值

  4. :param file:

  5. :return:

  6. """

  7. if dir:

  8. file = os.path.join(dir, file)

  9. async with aiofiles.open(file, 'r', encoding='utf-8', errors='ignore') as f:

  10. data = await f.read()

  11. data = yaml.load(data)

  12. # 匹配函数调用形式的语法

  13. pattern_function = re.compile(r'^\${([A-Za-z_]+\w*\(.*\))}$')

  14. pattern_function2 = re.compile(r'^\${(.*)}$')

  15. # 匹配取默认值的语法

  16. pattern_function3 = re.compile(r'^\$\((.*)\)$')

  17. def my_iter(data):

  18. """

  19. 递归测试用例,根据不同数据类型做相应处理,将模板语法转化为正常值

  20. :param data:

  21. :return:

  22. """

  23. if isinstance(data, (list, tuple)):

  24. for index, _data in enumerate(data):

  25. data[index] = my_iter(_data) or _data

  26. elif isinstance(data, dict):

  27. for k, v in data.items():

  28. data[k] = my_iter(v) or v

  29. elif isinstance(data, (str, bytes)):

  30. m = pattern_function.match(data)

  31. if not m:

  32. m = pattern_function2.match(data)

  33. if m:

  34. return eval(m.group(1))

  35. if not m:

  36. m = pattern_function3.match(data)

  37. if m:

  38. K, k = m.group(1).split(':')

  39. return bxmat.default_values.get(K).get(k)

  40. return data

  41. my_iter(data)

  42. return BXMDict(data)

'

运行

运行

可以看到,测试用例还支持一定的模板语法,如${function}、$(a:b)等,这能在很大程度上拓展测试人员用例编写的能力

http请求测试接口

http请求可以直接用aiohttp.ClientSession().request(method,url,**kwargs),http也是一个协程,可以保证网络请求时不被阻塞,通过await http()便可以拿到接口测试数据

  1. async def http(domain, *args, **kwargs):

  2. """

  3. http请求处理器

  4. :param domain: 服务地址

  5. :param args:

  6. :param kwargs:

  7. :return:

  8. """

  9. method, api = args

  10. arguments = kwargs.get('data') or kwargs.get('params') or kwargs.get('json') or {}

  11. # kwargs中加入token

  12. kwargs.setdefault('headers', {}).update({'token': bxmat.token})

  13. # 拼接服务地址和api

  14. url = ''.join([domain, api])

  15. async with ClientSession() as session:

  16. async with session.request(method, url, **kwargs) as response:

  17. res = await response_handler(response)

  18. return {

  19. 'response': res,

  20. 'url': url,

  21. 'arguments': arguments

  22. }

'

运行

运行

收集测试数据

协程的并发真的很快,这里为了避免服务响应不过来导致熔断,可以引入

  1. async def entrace(test_cases, loop, semaphore=None):

  2. """

  3. http执行入口

  4. :param test_cases:

  5. :param semaphore:

  6. :return:

  7. """

  8. res = BXMDict()

  9. # 在CookieJar的update_cookies方法中,如果unsafe=False并且访问的是IP地址,客户端是不会更新cookie信息

  10. # 这就导致session不能正确处理登录态的问题

  11. # 所以这里使用的cookie_jar参数使用手动生成的CookieJar对象,并将其unsafe设置为True

  12. async with ClientSession(loop=loop, cookie_jar=CookieJar(unsafe=True), headers={'token': bxmat.token}) as session:

  13. await advertise_cms_login(session)

  14. if semaphore:

  15. async with semaphore:

  16. for test_case in test_cases:

  17. data = await one(session, case_name=test_case)

  18. res.setdefault(data.pop('case_dir'), BXMList()).append(data)

  19. else:

  20. for test_case in test_cases:

  21. data = await one(session, case_name=test_case)

  22. res.setdefault(data.pop('case_dir'), BXMList()).append(data)

  23. return res

  24. async def one(session, case_dir='', case_name=''):

  25. """

  26. 一份测试用例执行的全过程,包括读取.yml测试用例,执行http请求,返回请求结果

  27. 所有操作都是异步非阻塞的

  28. :param session: session会话

  29. :param case_dir: 用例目录

  30. :param case_name: 用例名称

  31. :return:

  32. """

  33. project_name = case_name.split(os.sep)[1]

  34. domain = bxmat.url.get(project_name)

  35. test_data = await yaml_load(dir=case_dir, file=case_name)

  36. result = BXMDict({

  37. 'case_dir': os.path.dirname(case_name),

  38. 'api': test_data.args[1].replace('/', '_'),

  39. })

  40. if isinstance(test_data.kwargs, list):

  41. for index, each_data in enumerate(test_data.kwargs):

  42. step_name = each_data.pop('caseName')

  43. r = await http(session, domain, *test_data.args, **each_data)

  44. r.update({'case_name': step_name})

  45. result.setdefault('responses', BXMList()).append({

  46. 'response': r,

  47. 'validator': test_data.validator[index]

  48. })

  49. else:

  50. step_name = test_data.kwargs.pop('caseName')

  51. r = await http(session, domain, *test_data.args, **test_data.kwargs)

  52. r.update({'case_name': step_name})

  53. result.setdefault('responses', BXMList()).append({

  54. 'response': r,

  55. 'validator': test_data.validator

  56. })

  57. return result

事件循环负责执行协程并返回结果,在最后的结果收集中,我用测试用例目录来对结果进行了分类,这为接下来的自动生成pytest认可的测试用例打下了良好的基础

  1. def main(test_cases):

  2. """

  3. 事件循环主函数,负责所有接口请求的执行

  4. :param test_cases:

  5. :return:

  6. """

  7. loop = asyncio.get_event_loop()

  8. semaphore = asyncio.Semaphore(bxmat.semaphore)

  9. # 需要处理的任务

  10. # tasks = [asyncio.ensure_future(one(case_name=test_case, semaphore=semaphore)) for test_case in test_cases]

  11. task = loop.create_task(entrace(test_cases, loop, semaphore))

  12. # 将协程注册到事件循环,并启动事件循环

  13. try:

  14. # loop.run_until_complete(asyncio.gather(*tasks))

  15. loop.run_until_complete(task)

  16. finally:

  17. loop.close()

  18. return task.result()

第二部分

动态生成pytest认可的测试用例

首先说明下pytest的运行机制,pytest首先会在当前目录下找conftest.py文件,如果找到了,则先运行它,然后根据命令行参数去指定的目录下找test开头或结尾的.py文件,如果找到了,如果找到了,再分析fixture,如果有session或module类型的,并且参数autotest=True或标记了pytest.mark.usefixtures(a...),则先运行它们;再去依次找类、方法等,规则类似。大概就是这样一个过程。

可以看出,pytest测试运行起来的关键是,必须有至少一个被pytest发现机制认可的testxx.py文件,文件中有TestxxClass类,类中至少有一个def testxx(self)方法。

现在并没有任何pytest认可的测试文件,所以我的想法是先创建一个引导型的测试文件,它负责让pytest动起来。可以用pytest.skip()让其中的测试方法跳过。然后我们的目标是在pytest动起来之后,怎么动态生成用例,然后发现这些用例,执行这些用例,生成测试报告,一气呵成。

  1. # test_bootstrap.py

  2. import pytest

  3. class TestStarter(object):

  4. def test_start(self):

  5. pytest.skip('此为测试启动方法, 不执行')

我想到的是通过fixture,因为fixture有setup的能力,这样我通过定义一个scope为session的fixture,然后在TestStarter上面标记use,就可以在导入TestStarter之前预先处理一些事情,那么我把生成用例的操作放在这个fixture里就能完成目标了。

  1. # test_bootstrap.py

  2. import pytest

  3. @pytest.mark.usefixtures('te', 'test_cases')

  4. class TestStarter(object):

  5. def test_start(self):

  6. pytest.skip('此为测试启动方法, 不执行')

pytest有个--rootdir参数,该fixture的核心目的就是,通过--rootdir获取到目标目录,找出里面的.yml测试文件,运行后获得测试数据,然后为每个目录创建一份testxx.py的测试文件,文件内容就是content变量的内容,然后把这些参数再传给pytest.main()方法执行测试用例的测试,也就是在pytest内部再运行了一个pytest!最后把生成的测试文件删除。注意该fixture要定义在conftest.py里面,因为pytest对于conftest中定义的内容有自发现能力,不需要额外导入。

  1. # conftest.py

  2. @pytest.fixture(scope='session')

  3. def test_cases(request):

  4. """

  5. 测试用例生成处理

  6. :param request:

  7. :return:

  8. """

  9. var = request.config.getoption("--rootdir")

  10. test_file = request.config.getoption("--tf")

  11. env = request.config.getoption("--te")

  12. cases = []

  13. if test_file:

  14. cases = [test_file]

  15. else:

  16. if os.path.isdir(var):

  17. for root, dirs, files in os.walk(var):

  18. if re.match(r'\w+', root):

  19. if files:

  20. cases.extend([os.path.join(root, file) for file in files if file.endswith('yml')])

  21. data = main(cases)

  22. content = """

  23. import allure

  24. from conftest import CaseMetaClass

  25. @allure.feature('{}接口测试({}项目)')

  26. class Test{}API(object, metaclass=CaseMetaClass):

  27. test_cases_data = {}

  28. """

  29. test_cases_files = []

  30. if os.path.isdir(var):

  31. for root, dirs, files in os.walk(var):

  32. if not ('.' in root or '__' in root):

  33. if files:

  34. case_name = os.path.basename(root)

  35. project_name = os.path.basename(os.path.dirname(root))

  36. test_case_file = os.path.join(root, 'test_{}.py'.format(case_name))

  37. with open(test_case_file, 'w', encoding='utf-8') as fw:

  38. fw.write(content.format(case_name, project_name, case_name.title(), data.get(root)))

  39. test_cases_files.append(test_case_file)

  40. if test_file:

  41. temp = os.path.dirname(test_file)

  42. py_file = os.path.join(temp, 'test_{}.py'.format(os.path.basename(temp)))

  43. else:

  44. py_file = var

  45. pytest.main([

  46. '-v',

  47. py_file,

  48. '--alluredir',

  49. 'report',

  50. '--te',

  51. env,

  52. '--capture',

  53. 'no',

  54. '--disable-warnings',

  55. ])

  56. for file in test_cases_files:

  57. os.remove(file)

  58. return test_cases_files

可以看到,测试文件中有一个TestxxAPI的类,它只有一个test_cases_data属性,并没有testxx方法,所以还不是被pytest认可的测试用例,根本运行不起来。那么它是怎么解决这个问题的呢?答案就是CaseMetaClass。

  1. function_express = """

  2. def {}(self, response, validata):

  3. with allure.step(response.pop('case_name')):

  4. validator(response,validata)"""

  5. class CaseMetaClass(type):

  6. """

  7. 根据接口调用的结果自动生成测试用例

  8. """

  9. def __new__(cls, name, bases, attrs):

  10. test_cases_data = attrs.pop('test_cases_data')

  11. for each in test_cases_data:

  12. api = each.pop('api')

  13. function_name = 'test' + api

  14. test_data = [tuple(x.values()) for x in each.get('responses')]

  15. function = gen_function(function_express.format(function_name),

  16. namespace={'validator': validator, 'allure': allure})

  17. # 集成allure

  18. story_function = allure.story('{}'.format(api.replace('_', '/')))(function)

  19. attrs[function_name] = pytest.mark.parametrize('response,validata', test_data)(story_function)

  20. return super().__new__(cls, name, bases, attrs)

CaseMetaClass是一个元类,它读取test_cases_data属性的内容,然后动态生成方法对象,每一个接口都是单独一个方法,在相继被allure的细粒度测试报告功能和pytest提供的参数化测试功能装饰后,把该方法对象赋值给test+api的类属性,也就是说,TestxxAPI在生成之后便有了若干testxx的方法,此时内部再运行起pytest,pytest也就能发现这些用例并执行了。

  1. def gen_function(function_express, namespace={}):

  2. """

  3. 动态生成函数对象, 函数作用域默认设置为builtins.__dict__,并合并namespace的变量

  4. :param function_express: 函数表达式,示例 'def foobar(): return "foobar"'

  5. :return:

  6. """

  7. builtins.__dict__.update(namespace)

  8. module_code = compile(function_express, '', 'exec')

  9. function_code = [c for c in module_code.co_consts if isinstance(c, types.CodeType)][0]

  10. return types.FunctionType(function_code, builtins.__dict__)

在生成方法对象时要注意namespace的问题,最好默认传builtins.__dict__,然后自定义的方法通过namespace参数传进去。

后续(yml测试文件自动生成)

至此,框架的核心功能已经完成了,经过几个项目的实践,效果完全超过预期,写起用例来不要太爽,运行起来不要太快,测试报告也整的明明白白漂漂亮亮的,但我发现还是有些累,为什么呢?
我目前做接口测试的流程是,如果项目集成了swagger,通过swagger去获取接口信息,根据这些接口信息来手工起项目创建用例。这个过程很重复很繁琐,因为我们的用例模板已经大致固定了,其实用例之间就是一些参数比如目录、用例名称、method等等的区别,那么这个过程我觉得完全可以自动化。

因为swagger有个网页啊,我可以去提取关键信息来自动创建.yml测试文件,就像搭起架子一样,待项目架子生成后,我再去设计用例填传参就可以了。

于是我试着去解析请求swagger首页得到的HTML,然后失望的是并没有实际数据,后来猜想应该是用了ajax,打开浏览器控制台的时,我发现了api-docs的请求,一看果然是json数据,那么问题就简单了,网页分析都不用了。

  1. import re

  2. import os

  3. import sys

  4. from requests import Session

  5. template ="""

  6. args:

  7. - {method}

  8. - {api}

  9. kwargs:

  10. -

  11. caseName: {caseName}

  12. {data_or_params}:

  13. {data}

  14. validator:

  15. -

  16. json:

  17. successed: True

  18. """

  19. def auto_gen_cases(swagger_url, project_name):

  20. """

  21. 根据swagger返回的json数据自动生成yml测试用例模板

  22. :param swagger_url:

  23. :param project_name:

  24. :return:

  25. """

  26. res = Session().request('get', swagger_url).json()

  27. data = res.get('paths')

  28. workspace = os.getcwd()

  29. project_ = os.path.join(workspace, project_name)

  30. if not os.path.exists(project_):

  31. os.mkdir(project_)

  32. for k, v in data.items():

  33. pa_res = re.split(r'[/]+', k)

  34. dir, *file = pa_res[1:]

  35. if file:

  36. file = ''.join([x.title() for x in file])

  37. else:

  38. file = dir

  39. file += '.yml'

  40. dirs = os.path.join(project_, dir)

  41. if not os.path.exists(dirs):

  42. os.mkdir(dirs)

  43. os.chdir(dirs)

  44. if len(v) > 1:

  45. v = {'post': v.get('post')}

  46. for _k, _v in v.items():

  47. method = _k

  48. api = k

  49. caseName = _v.get('description')

  50. data_or_params = 'params' if method == 'get' else 'data'

  51. parameters = _v.get('parameters')

  52. data_s = ''

  53. try:

  54. for each in parameters:

  55. data_s += each.get('name')

  56. data_s += ': \n'

  57. data_s += ' ' * 8

  58. except TypeError:

  59. data_s += '{}'

  60. file_ = os.path.join(dirs, file)

  61. with open(file_, 'w', encoding='utf-8') as fw:

  62. fw.write(template.format(

  63. method=method,

  64. api=api,

  65. caseName=caseName,

  66. data_or_params=data_or_params,

  67. data=data_s

  68. ))

  69. os.chdir(project_)

现在要开始一个项目的接口测试覆盖,只要该项目集成了swagger,就能秒生成项目架子,测试人员只需要专心设计接口测试用例即可,我觉得对于测试团队的推广使用是很有意义的,也更方便了我这样的懒人。

总结:

感谢每一个认真阅读我文章的人!!!

作为一位过来人也是希望大家少走一些弯路,如果你不想再体验一次学习时找不到资料,没人解答问题,坚持几天便放弃的感受的话,在这里我给大家分享一些自动化测试的学习资源,希望能给你前进的路上带来帮助。

软件测试面试文档

我们学习必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有字节大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

 

          视频文档获取方式:
这份文档和视频资料,对于想从事【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴我走过了最艰难的路程,希望也能帮助到你!以上均可以分享,点下方小卡片即可自行领取。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值