数学建模常用的Matlab程序和函数

内部数学常数

 

pi

圆周率

exp(1)自然对数的底数e
i或j

虚数单位

Inf和inf无穷大

基本数学运算符

a+b

加法

a-b减法
a*b矩阵乘法
a.*b点乘(数组乘法)
a/b矩阵右除
a\b矩阵左除
a./b数组右除
a.\b数组左除
a^b矩阵乘方
a.^b数组乘方
-a负号
'共轭转置
.'一般转置

关系运算符

==等于
<小于
>大于
<=小于等于
>=大于等于
~=不等于

常用内部数学函数

指数函数exp(x)以e为底数
对数函数

log(x)


log10(x)


log2(x)

自然对数

常用对数


以2为底的对数

开方函数sqrt(x)表示x的算术平方根
绝对值函数abs(x)实数的绝对值和复数的模
三角函数(自变量的单位为弧度)

sin(x)


cos(x)


tan(x)


cot(x)


sec(x)


csc(x)

正弦函数


余弦函数


正切函数


余切函数


正割函数


余割函数

反三角函数

asin(x)


acos(x)


atan(x)


acot(x)


asec(x)


acsc(x)

反正弦函数


反余弦函数


反正切函数


反余切函数


反正割函数


反余割函数

双曲函数

sinh(x)


cosh(x)


tanh(x)


coth(x)


sech(x)


csch(x)

双曲正弦函数


双曲余弦函数


双曲正切函数


双曲余切函数


双曲正割函数


双曲余割函数

反双曲函数

asinh(x)


acosh(x)


atanh(x)


acoth(x)


asech(x)


acsch(x)

反双曲正弦函数


反双曲余弦函数


反双曲正切函数


反双曲余切函数


反双曲正割函数


反双曲余割函数

求角度函数atan2(y,x)以坐标原点为顶点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度,范围为(-pi,pi]
数论函数

gcd(a,b)


lcm(a,b)

两个整数的最大公约数


两个整数的最小公倍数

排列组合函数factorial(n)阶乘函数
复数函数

real(z)


imag(z)


abs(z)


angle(z)


conj(z)

实部函数


虚部函数


求复数z的模


求复数z的辐角,其范围是[-pi,pi]


求复数z的共轭复数

求整函数和截尾函数

ceil(x)


floor(x)


round(x)

表示大于或等于实数x的最小整数


表示小于或等于实数x的最大整数


最接近x的整数

最大、最小函数

max([a,b,c...])


min([a,b,c...])

求最大数


求最小数

符号函数sign(x)sign()\left\{\begin{matrix} 1 &, &x>0 \\ -1&, &x<0 \\ 0&, &x=0 \end{matrix}\right.

自定义函数-调用时:“[返回值列]=M文件名(参数列)”

        function  返回变量=函数值(输入变量)

                注释说明语句段

                函数体语句

进行函数的复合运算

compose(f,g)返回值为f(g(y))
compose(f,g,z)返回值为f(g(z))
compose(f,g,x,z)返回值为f(g(z))
compose(f,g,x,y,z)返回值为f(g(z))

  

因式分解

syms表达式中包含的变量
factor表达式

代数式展开

syms表达式中包含的变量
expand表达式

合并同类项

syms表达式中包含的变量
collect表达式,指定的变量

进行数学式化简

syms表达式中包含的变量
simplify表达式

进行变量替换

syms表达式和代换式包含的所有变量
subs表达式、要替换的变量或式子、代换式

进行数学式的转换

调用Maple中数学式的转换命令,调用格式如下:maple(' Maple的数学转换命令')

maple(‘convert(表达式,form)’)将表达式转化为form的的表达方式
maple(‘convert(表达式,form,x)’)指定变量x,将依赖变量x的函数转换为form的表达方式(此指令只对form为exp与sincos的转换式有用)

解方程

sovle(‘方程’,‘变元’)

方程的等号用普通的等号:=

解不等式

调用maple中解不等式的命令即可。包含以下:

maple(‘solve(不等式)’)
maple(‘solve(不等式,变元)’)
maple(‘solve({不等式},变元)’)
maple(‘solve(不等式,{变元})’)
maple(‘solve({不等式},{变元})’)

解不等式组

调用maple中解不等式组的命令即可

maple(‘maple中解不等式组的命令’)
maple(‘solve({不等式组},{变元组})’)

画图

方法1:先产生横坐标x的取值和相应的纵坐标y的取值,然后执行命令   plot(x,y)

方法2:fplot('f(x)',[xmin,xmax])

fplot('f(x)',[xmin,xmax,ymin,ymax])

方法3:ezplot('f(x)')

ezplot('f(x)',[xmin,xmax])

ezplot('f(x)',[xmin,xmax,ymin,ymax])

求极限

syms x
limit(f(x),x,a)

单侧极限

左极限

syms x

limit(f(x),x,a,'left')

右极限

syms x

limit(f(x),x,a,'right')

求导数

Syms x

Diff(f(x))

syms x

diff(f(x),x)

diff('f(x)')

diff('f(x)','x')

求高阶导数

diff('f(x)',n)

diff('f(x)','x',n)

syms x

diff(f(x),n)

syms x

diff(f(x),x,n)

隐函数求导

Matlab没有直接求隐函数导数的命令,但是可以根据数学方法一步一步计算隐函数导数的方法,或者自己编写一个求隐函数导数的小程序,不过最简便的方法是调用Maple中求隐函数导数的命令,调用格式为:

maple(‘implicitdiff(f(x,y)=0,y,x)’)

Matlab中没有直接求参数方程确定的函数的导数的命令,只能根据参数方程确定的函数求导公式

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \frac{dy}{dx}=\frac{\mathrm{\frac{dy}{dt}} }{\mathrm{\frac{dx}{dt}} }

求不定积分

int('f(x)')

int('f(x)','x')

syms x

int(f(x))

syms x

int(f(x),x)

求定积分、广义积分

int('f(x)',a,b)

int('f(x)','x',a,b)

syms x

int(f(x),a,b)

syms x

int(f(x),x,a,b)

进行换元积分计算

调用Maple函数库中的changevar命令:

maple('with(student)')加载student函数库后,使用changevar命令
maple(‘changevar(m(x)=p(u),Int(f(x),x))’)把积分表达式中的m(x)代换成p(u)

进行分布积分的计算

调用Maple函数库中的intparts命令:

maple('with(student)')

加载students函数库后,才能使用intparts命令
maple(‘intparts(Int(f(x),x,u))’)指定u,用分布积分公式进行计算

对数列和级数进行求和

syms n
symsum(f(n),n,a,b)

进行连乘

maple(‘product(f(n),n=a...b)’)

展开级数

syms x
Taylor(f(x),x,n,a)

进行积分变换

syms s t

lapalace(f(t),t,s)


ilapalace(F(t),s,t)

拉普拉斯变换


拉普拉斯逆变换

syms t w

fourier(f(t),t,w)


ifourier(F(w),w,t)

傅立叶变换


傅立叶逆变换

syms n z

ztrans(f(n),n,z)


iztrans(F(n),z,n)

Z变换


Z变换逆变换

在Matlab中,矩形法、梯形法,辛普森法求近似积分,可使用自身命令,也可调用Maple的相应命令:

maple('with(student)')maple('Maple中求定积分近似值的命令')

解微分方程

Dsolve('微分方程',‘自变量’)
dsolve('微分方程',‘初始条件或边界条件’,‘自变量’)

解微分方程组

Dsolve(‘微分方程组’,‘自变量’)
dsolve(‘微分方程组’,‘初始条件或边界条件’,‘自变量’)

  • 3
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值