基于逻辑回归的酒店房间入住率预测

本文介绍了如何运用逻辑回归算法预测酒店房间入住率,包括数据预处理、模型构建和性能评估。通过理解逻辑回归原理及合适的特征工程,可以为酒店管理者提供决策支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在酒店管理领域,了解房间入住率是至关重要的。通过预测入住率,酒店管理者可以做出更好的决策,例如制定价格策略、调整资源分配和改进营销活动。在本篇文章中,我们将介绍如何使用逻辑回归算法来进行酒店房间入住率的预测,并提供完整的代码和数据。

首先,让我们导入所需的库和数据集。这里我们使用一个虚构的数据集,其中包含一些与酒店相关的特征,如星级评级、房间价格、客房数量、距离景点的距离等。数据集已经经过预处理,并保存为一个csv文件。

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值