hdu 1085
#include<iostream>
#include<cstring>
using namespace std;
const int maxexp=1*1000+2*1000+5*1000;//由题目每种钱的个数不大于1000得数组最大长度
int main(){
int c1[maxexp],c2[maxexp],c3[maxexp],n1,n2,n3;//c1,c2,c3分别代表母函数的系数,n1,n2,n3代表钱的个数
bool false;//用于最后两种情况的输出,一种是在最大的幂之前找到为0的系数,另一种是为找到即为最大的幂加1
while(scanf("%d%d%d",&n1,&n2,&n3 && n1+n2+n3>0){
memset(c1,0,sizeof(c1));//先将数组置为0
memset(c2,0,sizeof(c1));
memset(c3,0,sizeof(c1));
for(int i=0;i<=n1;i++)//将钱为1的个数系数置为1,1+x+x^2+...+x^n1
c1[i]=1;
for(int j=0;j<=n1;j++)//将钱为2的个数和为1的个数进行合并同类项给c2
for(int m=0;m<=2*n2;m+=2)
c2[j+m]+=c1[j];
for(int h=0;h<=n1+2*n2;h++)//将钱为2的个数和为1的个数还有为5的个数进行合并同类项给c3
for(int m=0;m<=5*n3;m+=5)
c3[h+m]+=c2[h];
f=false;
for(int y=0;y<n1+2*n2+5*n3;y++)
if (c3[y]==0)
{
printf("%d\n", y);
f=true;
break;
}
if (!f) printf("%d\n", n1+2*n2+5*n3+1);//如果在最大幂之前未找到,就输出n1+2*n2+5*n3+1
}
return 0;
}
这是一道关于母函数的题,要想做出这道题首先要理解母函数如何使用。
母函数总结:(求一个值n的划分方法)
{由形如(1+x^1+x^2+x^3+..+x^n)*(1+x^2+x^4+x^6+...+x^n)*...*(1+x^n)
(指数可能代表:一种值的整数,一种砝码的质量,一种硬币的面值,一种邮票等等。)
求出G(x)=a0*x^0+a1*x^1+a2*x^2+a3*x^3+....+an*x^n;中的an。
解决方法:
由第一个式分别和后面的式子相乘,合并同类项
模板代码实现:
for(int i=2;i*m<=n;i++)///m=0,1,2,3,....
{
For(intj=0;j<=n;j++)
{
For(int k=0;k*(m*i)+j<=n;k++)
{
C2[k*i+j]+=c1[j];
}
//或则for(intk=0;k+j<=n;k+=i*m)
//{
///C2[k+j]+=c1[j];
//}
}
For(k=0;k<=n;k++)
C1[k]=c2[k];
C2[k]=0;
}
}
Printf(“%d”,c1[n]);
如若已经求得序列的母函数G(x),则该序列也随之确定。 序列a0,a1,a2,…可记为{an}
如何用母函数来解决诸如整数拆分、邮票组合、砝码称重一类的问题?这一类问题大致是需要找到整数拆分的方案数,邮票可以组合出多少面额,某一种重量可以由多少种砝码组合来完成称重……当然利用类似动态规划的思想往往也可以解决这类问题,下面讨论怎么使用母函数来完成。
“例1:若有1克、2克、3克、4克的砝码各一 枚,能称出哪几种重量?各有几种可能方案?
如何解决这个问题呢?考虑构造母函数。如果用x的指数表示称出的重量,则:
1个1克的砝码可以用函数1+x表示,1个2克的砝码可以用函数1+x2表示,
1个3克的砝码可以用函数1+x3表示,1个4克的砝码可以用函数1+x4表示,
几种砝码的组合可以称重的情况,可以用以上几个函数的乘积表示:
(1+x)(1+x^2)(1+x^3)(1+x^4)
=(1+x+x^2+x^3)(1+x3+x^4+x^7)
=1+x+x^2+2x^3+2x^4+2x^5+2x^6+2x^7+x^8+x^9+x^10
从上面的函数知道:可称出从1克到10克,系数便是方案数。
”理解了这个例子之后整数拆分、邮票组合、砝码称重一类的问题就都一并解决了。
下面来是我对这种母函数构造方式的理解。
对于上面的例1,如果取消砝码个数的限制,则母函数变为G(x)=(1+x+x^2+,,,,,)(1+x^2+x^4+...)(1+x^3+x^6+...)(1+x^4+x^8+..)
若要称量重量M,那么这个质量M就对应母函数展开后的x^M项。而x^M项的指数M按照数学上的展开来理解是什么来的呢?
假设M=14,我们用1个1g砝码,1个2g砝码,1个3g砝码和2个4g砝码。则可以看做是从G(x)=(1+x+x^2+,,,,,)(1+x^2+x^4+...)(1+x^3+x^6+...)(1+x^4+x^8+..)的每一个括号(每个括号分别对应1g, 2g, 3g, 4g砝码单独可以组合出哪些质量)里取出了x, x^2, x^3, x^8。然后意会一下为什么x^M项对应的系数就是称量质量M的方案数了。