实验记录:最优化理论实验一(线性规划问题求解)

本文展示了如何使用Matlab解决线性规划问题(包括无约束和约束问题)以及求解一元函数的最小值,通过`linprog`和`fminbnd`函数实现优化计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性规划问题

题目一:

clc
clear all
f=[-2;-5];
A=[1 0;0 1;1 1];
b=[4;6;8];
lb=[0;0];
[x fval exitflag]=linprog(f,A,b,[],[],lb)
fval=-fval

结果:

题目二:

clc
clear
f=[-3;1;1;0];
A=[1 -2 1 0];
b=[11];
Aeq=[-4 1 2 -1;-2 0 1 0];
beq=[3;1];
lb=[0;0;0;0];
[x fval exitflag]=linprog(f,A,b,Aeq,beq,lb)

题目三:用matlab绘制一元函数f(x)=e^{-x}+x^2并求其最小值  minf(x)

clc
clear
x=-5:0.01:5;
y=exp(-x)+x.^2;
plot (x,y);
xlabel('x');
ylabel('y')
title('y=exp(-x)+x.^2 ')
[x fval exitflag output]=fminbnd('exp(-x)+x.^2',-1,1)
%最后求出来的是x
%还要再代回去得到f(x)

代回去得到:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值