简介
我为什么要写这个呢?因为我信奉一点,纸质材料肯定会丢失的,所以我在尽量将内容转化成电子文档。至于为社么不选择OneNote,有道云笔记之类的,就是想以博客更新的方式催促自己可以坚持下去,过个1年,2年来看自己当初的付出,那是真的会很爽的,特别是希望自己到时候能感受到自己现在的努力或者犯傻。
再来是下面的内容来自哪里呢?来自《离散数学及其应用》。
接着是下面的公式是怎么写的呢?LaTex。
最后就是下面的内容类似我的读书笔记之类的,让我以后需要的时候可以拿来翻翻,所以类似总结,说明很少。
1.1 命题逻辑
∧ 合 取 ∨ 析 取 \wedge 合取 \\ \vee 析取 ∧合取∨析取
p ⊕ q 真 值 表 p \oplus q\ 真值表 p⊕q 真值表
p | q | 异或 |
---|---|---|
T | T | F |
T | F | T |
F | T | T |
F | F | F |
p ⟶ q 真 值 表 / 蕴 含 p \longrightarrow q\ 真值表 / 蕴含 p⟶q 真值表/蕴含
p | q | 条件语句 |
---|---|---|
T | T | T |
T | F | F |
F | T | T |
F | F | T |
可以结合下面的例子来理解:
- p:张生如果高中
- q:张生娶崔莺莺
问,在什么情况下张生食言了?
情况 | p | q | 条件语句 |
---|---|---|---|
1 | 张生高中 | 娶崔莺莺 | 张生没有食言 |
2 | 张生高中 | 没有娶崔莺莺 | 张生食言了 |
3 | 张生没有高中 | 娶崔莺莺 | 张生没有食言,他娶了崔莺莺 |
4 | 张生没有高中 | 也没有娶崔莺莺 | 张生本质上没有食言,他的确没高中 |
其中可能有人会在3和4之间纠结,因为觉得3也应该算张生食言了,但是和情况2比较,你觉得哪个更像张生食言了?
逻辑运算优先级
可以这么理解,逆类似负数的符号,优先级肯定是最高的。
接下来的就是合取优先级高于析取。
最后就是蕴含。
1.3 命题等价式
衡等律
p ∧ T ≡ p p ∨ F ≡ p p\wedge \textbf{T} \equiv p \\ p \vee \textbf{F} \equiv p p∧T≡pp∨F≡p
支配率
p ∨ T ≡ T p ∧ F ≡ F p \vee \textbf{T} \equiv \textbf{T} \\ p \wedge \textbf{F} \equiv \textbf{F} p∨T≡Tp∧F≡F
幂等律
p ∧ p ≡ p p