第1章 基础:逻辑和证明 部分内容

这篇博客主要介绍逻辑和证明的基础知识,包括命题逻辑的运算优先级、命题等价式及其定律,如衡等律、德摩根率,以及量词和谓词的概念,如全称量词、存在量词和量词的否定规则。内容来源于《离散数学及其应用》,适合初学者理解和复习。
摘要由CSDN通过智能技术生成

简介

我为什么要写这个呢?因为我信奉一点,纸质材料肯定会丢失的,所以我在尽量将内容转化成电子文档。至于为社么不选择OneNote,有道云笔记之类的,就是想以博客更新的方式催促自己可以坚持下去,过个1年,2年来看自己当初的付出,那是真的会很爽的,特别是希望自己到时候能感受到自己现在的努力或者犯傻。

再来是下面的内容来自哪里呢?来自《离散数学及其应用》。

接着是下面的公式是怎么写的呢?LaTex。

最后就是下面的内容类似我的读书笔记之类的,让我以后需要的时候可以拿来翻翻,所以类似总结,说明很少。

1.1 命题逻辑

∧ 合 取 ∨ 析 取 \wedge 合取 \\ \vee 析取

p ⊕ q   真 值 表 p \oplus q\ 真值表 pq 

p q 异或
T T F
T F T
F T T
F F F

p ⟶ q   真 值 表 / 蕴 含 p \longrightarrow q\ 真值表 / 蕴含 pq /

p q 条件语句
T T T
T F F
F T T
F F T

可以结合下面的例子来理解:

  • p:张生如果高中
  • q:张生娶崔莺莺

问,在什么情况下张生食言了?

情况 p q 条件语句
1 张生高中 娶崔莺莺 张生没有食言
2 张生高中 没有娶崔莺莺 张生食言了
3 张生没有高中 娶崔莺莺 张生没有食言,他娶了崔莺莺
4 张生没有高中 也没有娶崔莺莺 张生本质上没有食言,他的确没高中

其中可能有人会在3和4之间纠结,因为觉得3也应该算张生食言了,但是和情况2比较,你觉得哪个更像张生食言了?

逻辑运算优先级

可以这么理解,逆类似负数的符号,优先级肯定是最高的。

接下来的就是合取优先级高于析取。

最后就是蕴含。

1.3 命题等价式

衡等律

p ∧ T ≡ p p ∨ F ≡ p p\wedge \textbf{T} \equiv p \\ p \vee \textbf{F} \equiv p pTppFp

支配率

p ∨ T ≡ T p ∧ F ≡ F p \vee \textbf{T} \equiv \textbf{T} \\ p \wedge \textbf{F} \equiv \textbf{F} pTTpFF

幂等律

p ∧ p ≡ p p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值