图的同构

本文介绍了图的同构概念,定义为两个图G1和G2之间存在一对一满射函数,保持节点间的邻接关系。通过举例展示了同构的判断,并指出虽然存在同构,但未涉及具体的判定算法。
摘要由CSDN通过智能技术生成

图的同构

先解释啥叫同构:


设 两 个 图 G 1 = ( V 1 , E 1 ) 和 G 2 ( V 2 , G 2 ) 。 a , b ∈ V 1 , c , d ∈ V 2 , 若 存 在 一 个 一 对 一 和 满 射 函 数 : f , 使 得 f ( a ) = c , f ( b ) = d , 并 且 a 和 b 相 邻 时 , c 与 d 也 相 邻 。 设两个图G_1=(V_1,E_1)和G_2(V_2,G_2)。\\ a,b \in V_1,c,d \in V_2,若存在一个一对一和满射函数:f࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值