AT_abc254_f [ABC254F] Rectangle GCD 题解

根据题意,我们可以得到一个式子:
gcd ⁡ i = h 1 h 2 ( gcd ⁡ j = w 1 w 2 ( a i + b j ) ) \gcd_{i=h_1}^{h_2}(\gcd_{j=w_1}^{w_2}(a_i+b_j)) i=h1gcdh2(j=w1gcdw2(ai+bj))

自然而然地,我们的暴力思路就有了,直接根据上面这个式子直接进行 gcd ⁡ \gcd gcd 运算,时间复杂度为 O ( q n 2 ) O(qn^2) O(qn2)

然而这个题的数据范围是 1 ≤ N , Q ≤ 2 × 1 0 5 {1\leq N,Q\leq 2\times 10^5} 1N,Q2×105,所以我们需要想一下其他思路。

在我们学习的 gcd ⁡ ( a , b ) {\gcd(a,b)} gcd(a,b) 的解法中,有一种是更相减损法 gcd ⁡ ( a , b ) = gcd ⁡ ( a , b − a ) {\gcd(a,b)=\gcd(a,b-a)} gcd(a,b)=gcd(a,ba)。 这时我们再来根据这个知识点思考这道题:

原式
gcd ⁡ ( a h 1 + b w 1 ,   a h 1 + b w 1 + 1 ,   a h 1 + b w 1 + 2 ,   ⋯   ,   a h 1 + b w 2 ) gcd ⁡ ( a h 1 + 1 + b w 1 ,   a h 1 + 1 + b w 1 + 1 ,   a h 1 + 1 + b w 1 + 2 ,   ⋯   ,   a h 1 + 1 + b w 2 ) ⋮ gcd ⁡ ( a h 2 + b w 1 ,   a h 2 + b w 1 + 1 ,   a h 2 + b w 1 + 2 ,   ⋯   ,   a h 2 + b w 2 ) \begin{aligned} &\gcd(a_{h_1}+b_{w_1},\text{ }a_{h_1}+b_{w_1+1},\text{ }a_{h_1}+b_{w_1+2},\text{ }\cdots,\text{ }a_{h_1}+b_{w_2})\\ &\gcd(a_{h_1+1}+b_{w_1},\text{ }a_{h_1+1}+b_{w_1+1},\text{ }a_{h_1+1}+b_{w_1+2},\text{ }\cdots,\text{ }a_{h_1+1}+b_{w_2})\\ &\vdots\\ &\gcd(a_{h_2}+b_{w_1},\text{ }a_{h_2}+b_{w_1+1},\text{ }a_{h_2}+b_{w_1+2},\text{ }\cdots,\text{ }a_{h_2}+b_{w_2})\\ \end{aligned} gcd(ah1+bw1, ah1+bw1+1, ah1+bw1+2, , ah1+bw2)gcd(ah1+1+bw1, ah1+1+bw1+1, ah1+1+bw1+2, , ah1+1+bw2)gcd(ah2+bw1, ah2+bw1+1, ah2+bw1+2, , ah2+bw2)

更相减损法化简后
gcd ⁡ ( a h 1 + b w 1 ,   b w 1 + 1 − b w 1 ,   b w 1 + 2 − b w 1 + 1 ,   b w 1 + 3 − b w 1 + 2 ,   ⋯   ,   b w 2 − b w 2 − 1 ) gcd ⁡ ( a h 1 + 1 + b w 1 ,   b w 1 + 1 − b w 1 ,   b w 1 + 2 − b w 1 + 1 ,   b w 1 + 3 − b w 1 + 2 ,   ⋯   ,   b w 2 − b w 2 − 1 ) ⋮ gcd ⁡ ( a h 2 + b w 1 ,   b w 1 + 1 − b w 1 ,   b w 1 + 2 − b w 1 + 1 ,   b w 1 + 3 − b w 1 + 2 ,   ⋯   ,   b w 2 − b w 2 − 1 ) \begin{aligned} &\gcd(a_{h_1}+b_{w_1},\text{ }b_{w_1+1}-b_{w_1},\text{ }b_{w_1+2}-b_{w_1+1},\text{ }b_{w_1+3}-b_{w_1+2},\text{ }\cdots,\text{ }b_{w_2}-b_{w_2-1})\\ &\gcd(a_{h_1+1}+b_{w_1},\text{ }b_{w_1+1}-b_{w_1},\text{ }b_{w_1+2}-b_{w_1+1},\text{ }b_{w_1+3}-b_{w_1+2},\text{ }\cdots,\text{ }b_{w_2}-b_{w_2-1})\\ &\vdots\\ &\gcd(a_{h_2}+b_{w_1},\text{ }b_{w_1+1}-b_{w_1},\text{ }b_{w_1+2}-b_{w_1+1},\text{ }b_{w_1+3}-b_{w_1+2},\text{ }\cdots,\text{ }b_{w_2}-b_{w_2-1})\\ \end{aligned} gcd(ah1+bw1, bw1+1bw1, bw1+2bw1+1, bw1+3bw1+2, , bw2bw21)gcd(ah1+1+bw1, bw1+1bw1, bw1+2bw1+1, bw1+3bw1+2, , bw2bw21)gcd(ah2+bw1, bw1+1bw1, bw1+2bw1+1, bw1+3bw1+2, , bw2bw21)

再进一步化简后
gcd ⁡ ( a h 1 + b w 1 ,   b w 1 + 1 − b w 1 ,   b w 1 + 2 − b w 1 + 1 ,   b w 1 + 3 − b w 1 + 2 ,   ⋯   ,   b w 2 − b w 2 − 1 ) gcd ⁡ ( a h 1 + b w 1 ,   a h 1 + 1 − a h 1 ,   a h 1 + 2 − a h 1 + 1 ,   a h 1 + 3 − a h 1 + 2 ,   ⋯   ,   a h 2 − a h 2 − 1 ) \begin{aligned} \gcd(a_{h_1}+b_{w_1},\text{ }b_{w_1+1}-b_{w_1},\text{ }b_{w_1+2}-b_{w_1+1},\text{ }b_{w_1+3}-b_{w_1+2},\text{ }\cdots,\text{ }b_{w_2}-b_{w_2-1})\\ \gcd(a_{h_1}+b_{w_1},\text{ }a_{h_1+1}-a_{h_1},\text{ }a_{h_1+2}-a_{h_1+1},\text{ }a_{h_1+3}-a_{h_1+2},\text{ }\cdots,\text{ }a_{h_2}-a_{h_2-1})\\ \end{aligned} gcd(ah1+bw1, bw1+1bw1, bw1+2bw1+1, bw1+3bw1+2, , bw2bw21)gcd(ah1+bw1, ah1+1ah1, ah1+2ah1+1, ah1+3ah1+2, , ah2ah21)

最后简单结合
gcd ⁡ ( a h 1 + b w 1 ,   gcd ⁡ i = h 1 + 1 h 2 ( a i − a i − 1 ) ,   gcd ⁡ j = w 1 + 1 w 2 ( b j − b j − 1 ) ) \begin{aligned} \gcd(a_{h_1}+b_{w_1},\text{ }\gcd_{i=h_1+1}^{h_2}(a_i-a_{i-1}),\text{ }\gcd_{j=w_1+1}^{w_2}(b_j-b_{j-1}))\\ \end{aligned} gcd(ah1+bw1, i=h1+1gcdh2(aiai1), j=w1+1gcdw2(bjbj1))

我们现在就得到了一个简单明了的式子了。而这个式子由于与区间有关,所以我们就可以考虑用经常解决区间问题的 线段树 来进行区间查询,当然因为此题没有区间修改,就也可以用 ST表 来操作。我这里是用线段树做的。

Code:

#include<bits/stdc++.h>
#define ri register int
#define rll register long long
using namespace std;

typedef long long ll;
typedef unsigned long long ull;
const int INF=0x3f3f3f3f;
const int N=2e5+10;
int n,T;
int a[N],b[N];

inline int gcd__(int a, int b){// 最快GCD的求法
	if(!a) return b;
	if(!b) return a;
	int az=__builtin_ctz(a), bz=__builtin_ctz(b),z=(az>bz?bz:az), diff;
	b>>=bz;
	while(a){
		a>>=az;
		diff=b-a;
		az=__builtin_ctz(diff);
		if(a<b) b=a;
		a=(diff<0?-diff:diff);
	}
	return b<<z; 
}

namespace SegmentTree{
    int a[N]={0};
    struct SG{
        struct node{
            int l,r;ll gcd;
            #define l(x) tree[x].l
            #define r(x) tree[x].r
            #define gcd(x) tree[x].gcd
        }tree[N<<2];
        void build(int p,int l,int r){
            l(p)=l, r(p)=r;
            if(l==r){ gcd(p)=(a[l]>=0? a[l]: -a[l]); return;}
            int mid=(l+r)>>1;
            build(p*2,l,mid);
            build(p*2+1,mid+1,r);
            gcd(p)=gcd__(gcd(p*2),gcd(p*2+1));
        }
        ll ask_gcd(int p,int l,int r){
            if(l<=l(p)&&r(p)<=r) return gcd(p);
            int mid=(l(p)+r(p))>>1;
            ll d=0;
            if(l<=mid) d=gcd__(d,ask_gcd(p*2,l,r));
            if(r>mid) d=gcd__(d,ask_gcd(p*2+1,l,r));
            return d;
        }	    
    }tr1,tr2;
}

int main(){
    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    cin>>n>>T;
    for(ri i=1;i<=n;i++) cin>>a[i], SegmentTree::a[i]=a[i]-a[i-1];
    SegmentTree::tr1.build(1,1,n);
    for(ri i=1;i<=n;i++) cin>>b[i], SegmentTree::a[i]=b[i]-b[i-1];
    SegmentTree::tr2.build(1,1,n);
    // 重定义一下变量名,防止与std中的变量名冲突
    #define x1 yinqyx1
    #define y1 yinqyy1
    #define x2 yinqyx2
    #define y2 yinqyy2
    int x1,x2,y1,y2,gcda,gcdb,ans;
    while(T--){
        cin>>x1>>x2>>y1>>y2;
        gcda=SegmentTree::tr1.ask_gcd(1,x1+1,x2);
        gcdb=SegmentTree::tr2.ask_gcd(1,y1+1,y2);
        ans=gcd__(gcda,gcdb), ans=gcd__(ans,a[x1]+b[y1]);
        cout<<ans<<'\n';
    }
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值