AcWing 792. 高精度减法
1、题目(来源于AcWing):
给定两个正整数,计算它们的差,计算结果可能为负数。
输入格式
共两行,每行包含一个整数。
输出格式
共一行,包含所求的差。
数据范围
1≤整数长度≤105
输入样例:
32
11
输出样例:
21
2、基本思想:
此算法适用于高精度整数的减法,是将整数的每一位存入一个数组,然后遵循“不够减向前借位补十”的原则,用人工加减的方法求和。
3、步骤:
①用字符串输入,将相加的两个数a, b每一位拆分倒序(个位在前)存入A,B两个数组
②写一个函数判断A,B的大小,若A比B小则引用时交换函数中A,B的位置,在前输出一个负号
③利用t来表示每一位相减的得数再+10后对10取余则完成了不够减向前借位补十的过程。
④正序输出结果C
4、C++代码如下(该代码引用AcWing网站的代码):
#include <iostream>
#include <vector>
using namespace std;
vector<int> sub(vector<int> &A, vector<int> &B);
bool cmp(vector<int> &A, vector<int> &B);
int main()
{
string a, b;
vector<int> A, B;
cin >> a >> b;
for (int i = a.size() - 1; i>=0; i--) A.push_back(a[i] - '0');
for (int i = b.size() - 1; i>=0; i--) B.push_back(b[i] - '0');
if(cmp(A, B))
{
auto C = sub(A, B);
for (int i=C.size()-1; i>=0; i--) cout << C[i];
}
else
{
auto C = sub(B, A);
printf("-");
for (int i=C.size()-1; i>=0; i--) cout << C[i];
}
return 0;
}
bool cmp(vector<int> &A, vector<int> &B)//比较A,B大小,A>=B返回真,A<B返回假
{
if (A.size() != B.size()) return (A.size() > B.size());//依据位数比较
for (int i=A.size() - 1; i>=0; i--)
{
if (A[i] != B[i]) return (A[i] > B[i]);
}//依据每一位的大小比较
return true;//相等时返回真
}
vector<int> sub(vector<int> &A, vector<int> &B)
{
vector<int> C;
for (int i = 0 , t = 0; i<A.size(); i++)
{
t = A[i] - t;
if (i < B.size()) t -= B[i];
C.push_back((t + 10) % 10);
if (t<0) t=1;//不够减向前借一位
else t=0;//够减就要将t还原
}
while (C.size() > 1 && C.back() == 0) C.pop_back();//由于是倒序存入,所以要清空前面的0
return C;
}//该代码引用AcWing网站的代码
注意事项(基于高精度加法,重复的注意事项不赘述):
①要多写一个函数判断减数和被减数的大小
②结果是倒序存入,比如225-221=4会输出004,有多余的0所以用C.pop_back()把前导0去掉。