AcWing 793. 高精度乘法
1、题目(来源于AcWing):
给定两个正整数A和B,请你计算A * B的值。
输入格式
共两行,第一行包含整数A,第二行包含整数B。
输出格式
共一行,包含A * B的值。
数据范围
1≤A的长度≤100000,
0≤B≤10000
输入样例:
2
3
输出样例:
6
2、基本思想:
适用于一个高精度整数乘一个低精度整数,是将高精度整数的每一位存入一个大数组,将低精度整数看成一个整体,按从低位到高位的次序依次将大数组的元素与低精度整数相乘,每一次都用t表示,将t % 10的值一次存入新的大数组C,令t = t /10(进位)进入下一次运算。
3、步骤:
①将第一个乘数存入一个大数组(第一个数据比较大,不能用int)
②将第二个数看做整体进行人工乘法
③正序输出结果
4、C++代码如下(该代码引用AcWing网站的代码):
#include <iostream>
#include <vector>
using namespace std;
vector<int> mul(vector<int> &A, int b);
int main()
{
string a;
int b;
cin >> a >> b;
vector<int> A;
for (int i = a.size() - 1; i>=0; i--) A.push_back(a[i] - '0');
auto C = mul(A, b);
for (int i = C.size() - 1; i>=0; i--) cout << C[i];
return 0;
}
vector<int> mul(vector<int> &A, int b)
{
vector<int> C;
for(int i = 0, t = 0; i<A.size() || t; i++)
{
if(i<A.size()) t += A[i] * b;
C.push_back(t % 10);//取对10的余数存入
t /= 10;//进位
}//计算A * b
while(C.size() > 1 && C.back() == 0) C.pop_back();//清除前导0
return C;
}//该代码引用AcWing网站的代码
注意事项:
①这里是高精度整数和低精度整数相乘,所以高精度整数要用大数组存,低精度整数只需要用int就可以了
②计算A * b的那个for循环中的判断条件之所以写成 i<A.size() || t 还有 t += A[i] * b 前加判断条件,是因为这样就包含了最后一次的情况,可以不用把最后一次单独写出来,节省了步骤。
③和高精度减法一样,也要清除前导0