洛谷 P5638 【CSGRound2】光骓者的荣耀

洛谷 P5638 【CSGRound2】光骓者的荣耀

1、题目(来源于洛谷):
小 K 打下的江山一共有n个城市,城市 i 和城市 i+1 有一条双向高速公路连接,走这条路要耗费时间a(i)。

小 K 为了关心人民生活,决定定期进行走访。他每一次会从1号城市到n号城市并在经过的城市进行访问。其中终点必须为城市n。

不仅如此,他还有一个传送器,传送半径为k,也就是可以传送到 i-k 和 i+k 。如果目标城市编号小于1则为1,大于n则为n。

但是他的传送器电量不足,只能传送一次,况且由于一些原因,他想尽量快的完成访问,于是就想问交通部部长您最快的时间是多少。

注意:他可以不访问所有的城市,使用传送器不耗费时间。

输入格式:
两行,第一行n,k。
第二行n-1个整数,第 i 个表示a(i) 。

输出格式:
一个整数,表示答案。

样例:
输入 #1
4 0
1 2 3
输出 #1
6
输入 #2
4 1
1 2 3
输出 #2
3

说明与提示:
样例 1,2 的图示均为以下图片:
在这里插入图片描述
样例解释 1:
不使用传送器直接走,答案为6,可以证明这个是最小值。

样例解释 2:
在3处使用,传送到4,答案为3,可以证明这个是最小值。

数据范围:
在这里插入图片描述
2、主要思想:
①在数组中枚举长度为传送半径 k 的连续子序列,找到能省下最多时间的那一段子序列的和ret,用总时长减去ret即为答案。
②用前缀和优化,降低时间复杂度。

3、C++代码如下:

#include <iostream>

using namespace std;

const int N = 1e6 + 10;

int n, k;
long long a[N], s[N], ret;//ret为长度为k的连续子序列时间和

int main()
{
	cin >> n >> k;
	
	for (int i = 1; i <= n - 1; i ++ )
	{
		cin >> a[i];
		s[i] = s[i - 1] + a[i];//令s为a的前缀和(s[i] = a[1] + ... +a[i])
	}
	
	for (int i = 0; i <= (n - 1) - k; i ++ )//i要从0开始,枚举到(n - 1) - k就可以停了
	{
		ret = max(ret, s[i + k] - s[i]);//找到可以省下最多时间的一段
	}
	
	cout << (s[n - 1] - s[0]) - ret;
	
	return 0;
}

注意事项:
最后一个for循环 i 要从0开始,因为如果 i 从1开始就会取不到1号城到2号城的时间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值