洛谷 P5638 【CSGRound2】光骓者的荣耀
1、题目(来源于洛谷):
小 K 打下的江山一共有n个城市,城市 i 和城市 i+1 有一条双向高速公路连接,走这条路要耗费时间a(i)。
小 K 为了关心人民生活,决定定期进行走访。他每一次会从1号城市到n号城市并在经过的城市进行访问。其中终点必须为城市n。
不仅如此,他还有一个传送器,传送半径为k,也就是可以传送到 i-k 和 i+k 。如果目标城市编号小于1则为1,大于n则为n。
但是他的传送器电量不足,只能传送一次,况且由于一些原因,他想尽量快的完成访问,于是就想问交通部部长您最快的时间是多少。
注意:他可以不访问所有的城市,使用传送器不耗费时间。
输入格式:
两行,第一行n,k。
第二行n-1个整数,第 i 个表示a(i) 。
输出格式:
一个整数,表示答案。
样例:
输入 #1
4 0
1 2 3
输出 #1
6
输入 #2
4 1
1 2 3
输出 #2
3
说明与提示:
样例 1,2 的图示均为以下图片:
样例解释 1:
不使用传送器直接走,答案为6,可以证明这个是最小值。
样例解释 2:
在3处使用,传送到4,答案为3,可以证明这个是最小值。
数据范围:
2、主要思想:
①在数组中枚举长度为传送半径 k 的连续子序列,找到能省下最多时间的那一段子序列的和ret,用总时长减去ret即为答案。
②用前缀和优化,降低时间复杂度。
3、C++代码如下:
#include <iostream>
using namespace std;
const int N = 1e6 + 10;
int n, k;
long long a[N], s[N], ret;//ret为长度为k的连续子序列时间和
int main()
{
cin >> n >> k;
for (int i = 1; i <= n - 1; i ++ )
{
cin >> a[i];
s[i] = s[i - 1] + a[i];//令s为a的前缀和(s[i] = a[1] + ... +a[i])
}
for (int i = 0; i <= (n - 1) - k; i ++ )//i要从0开始,枚举到(n - 1) - k就可以停了
{
ret = max(ret, s[i + k] - s[i]);//找到可以省下最多时间的一段
}
cout << (s[n - 1] - s[0]) - ret;
return 0;
}
注意事项:
最后一个for循环 i 要从0开始,因为如果 i 从1开始就会取不到1号城到2号城的时间。