洛谷 P5638 【CSGRound2】光骓者的荣耀

洛谷 P5638 【CSGRound2】光骓者的荣耀

1、题目(来源于洛谷):
小 K 打下的江山一共有n个城市,城市 i 和城市 i+1 有一条双向高速公路连接,走这条路要耗费时间a(i)。

小 K 为了关心人民生活,决定定期进行走访。他每一次会从1号城市到n号城市并在经过的城市进行访问。其中终点必须为城市n。

不仅如此,他还有一个传送器,传送半径为k,也就是可以传送到 i-k 和 i+k 。如果目标城市编号小于1则为1,大于n则为n。

但是他的传送器电量不足,只能传送一次,况且由于一些原因,他想尽量快的完成访问,于是就想问交通部部长您最快的时间是多少。

注意:他可以不访问所有的城市,使用传送器不耗费时间。

输入格式:
两行,第一行n,k。
第二行n-1个整数,第 i 个表示a(i) 。

输出格式:
一个整数,表示答案。

样例:
输入 #1
4 0
1 2 3
输出 #1
6
输入 #2
4 1
1 2 3
输出 #2
3

说明与提示:
样例 1,2 的图示均为以下图片:
在这里插入图片描述
样例解释 1:
不使用传送器直接走,答案为6,可以证明这个是最小值。

样例解释 2:
在3处使用,传送到4,答案为3,可以证明这个是最小值。

数据范围:
在这里插入图片描述
2、主要思想:
①在数组中枚举长度为传送半径 k 的连续子序列,找到能省下最多时间的那一段子序列的和ret,用总时长减去ret即为答案。
②用前缀和优化,降低时间复杂度。

3、C++代码如下:

#include <iostream>

using namespace std;

const int N = 1e6 + 10;

int n, k;
long long a[N], s[N], ret;//ret为长度为k的连续子序列时间和

int main()
{
	cin >> n >> k;
	
	for (int i = 1; i <= n - 1; i ++ )
	{
		cin >> a[i];
		s[i] = s[i - 1] + a[i];//令s为a的前缀和(s[i] = a[1] + ... +a[i])
	}
	
	for (int i = 0; i <= (n - 1) - k; i ++ )//i要从0开始,枚举到(n - 1) - k就可以停了
	{
		ret = max(ret, s[i + k] - s[i]);//找到可以省下最多时间的一段
	}
	
	cout << (s[n - 1] - s[0]) - ret;
	
	return 0;
}

注意事项:
最后一个for循环 i 要从0开始,因为如果 i 从1开始就会取不到1号城到2号城的时间。

者的荣耀”(P5638)是一道与前缀和相关的题目。该题主要围绕计算从城市 1 到城市 n 耗费的最少时间展开,解题关键在于利用传送器,通过前缀和的方法来优化计算过程。 ### 题目核心思路 - **前缀和原理**:前缀和是一种处理区间常用的求和方法,公式为 `sum[i]=sum[i - 1]+a[i]`,对于区间 `[L, R]` 的和,可转化为 `sum[R] - sum[L - 1]` [^5]。 - **具体应用**:在本题中,对前缀和数组 `s[]` 的元素 `s[i]`(`1 ≤ i ≤ n - k`),构建传送半径为 `k` 的区间和 `s[i - 1 + k] - s[i - 1]`,此区间和表示使用传送器传送时,从城市 `i` 到城市 `i + k` 耗费的时间。求出该区间和的最大值后,用总耗费时间减去它,即可得到从城市 1 到城市 n 耗费的最少时间 [^2]。 ### 代码实现 以下是几种不同的代码实现方式: ```cpp // 代码一 #include <iostream> #include <bits/stdc++.h> using namespace std; long long a[999999]; long long b[999999]; long long n; long long k, ans; long long sum = 0; long long maxl = 0; int main () { cin >> n >> k; for (int i = 0; i < n - 1; i++) { cin >> a[i]; sum = sum + a[i]; } for (int i = 0; i < n - k; i++) { for (int j = i; j < k + i; j++) { b[i] = a[j] + b[i]; } } for (int i = 0; i < n - k; i++) { if (b[i] > maxl) { maxl = b[i]; } } ans = sum - maxl; cout << ans << endl; return 0; } ``` ```cpp // 代码二 #include<bits/stdc++.h> using namespace std; long long sum[1000001]; long long n,k; int main() { cin>>n>>k; for(int i=1;i<=n-1;i++) { long long x; cin>>x; sum[i]=sum[i-1]+x; } long long cnt=sum[k]; for(int i=2;i<=n-k;i++) { cnt=max(cnt,sum[i+k-1]-sum[i-1]); } cout<<sum[n-1]-cnt<<endl; return 0; } ``` ```cpp // 代码三 #include <bits/stdc++.h> using namespace std; typedef long long LL; const int maxn=1e6+5; LL s[maxn],d[maxn]; LL t; int n,k; int main() { cin>>n>>k; for(int i=1; i<n; i++) { cin>>s[i]; s[i]+=s[i-1]; } for(int i=1; i<=n-k; i++) { t=max(t,s[i+k-1]-s[i-1]); } cout<<s[n-1]-t<<endl; return 0; } ``` ```cpp // 代码四 #include <iostream> using namespace std; long long sum[1000001]; int main() { long long n,k,a,maxx=0; cin>>n>>k; sum[1]=0; for(int i=2;i<=n;i++) { cin>>a; sum[i]=sum[i-1]+a; } for(int i=k+1;i<=n;i++) maxx=max(maxx,sum[i]-sum[i-k]); cout<<sum[n]-maxx; return 0; } ``` ```cpp // 代码五 #include <bits/stdc++.h> using namespace std; typedef long long ll; ll a[1000005],dp[1000005],b[1000005]; int main() { int n,k; ll sum=0; scanf("%d %d",&n,&k); for(int i=0;i<n-1;i++){ scanf("%lld",&a[i]); sum+=a[i]; b[i]=sum; } if(k==0){ printf("%lld\n",sum); return 0; } for(int i=0;i<k;i++) dp[i]=0; for(int i=k;i<n;i++) dp[i]=min(dp[i-1]+a[i],b[i-k]); printf("%lld\n",dp[n-1]); return 0; } ``` ### 代码解释 - **代码一**:先计算总路程 `sum`,再计算每个长度为 `k` 的区间和存于 `b` 数组,找出最大值 `maxl`,最后用总路程减去最大值得到最少时间 [^1]。 - **代码二**:通过前缀和数组 `sum` 计算总路程,再找出长度为 `k` 的区间和的最大值 `cnt`,用总路程减去 `cnt` 得到结果 [^1]。 - **代码三**:同样利用前缀和数组 `s`,计算区间和最大值 `t`,最后用总路程减去 `t` 得到最少时间 [^2]。 - **代码四**:计算前缀和数组 `sum`,找出长度为 `k` 的区间和最大值 `maxx`,用总路程减去 `maxx` 得到结果 [^3]。 - **代码五**:使用前缀和数组 `b` 计算总路程,通过动态规划数组 `dp` 计算最少时间,当 `k = 0` 时直接输出总路程 [^4]。 ### 坑点提示 本题的一个“坑点”是 `i` 的上界取至城市 `n - k`,原因是传送半径为 `k` 时,由城市 `n - k` 可一步至终点城市 `n` [^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值